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1. Introduction

Since the seminal paper of Bakshi and Kapadia @Q0he market variance risk
premium has been reported to be negative, on awergring alternative sample
periods' Since the payoff of a variance swap contract & difference between the
realized variance and the variance swap rate, megatturns to long positions on
variance swap contracts for all time horizons migmat investors are willing to accept
negative returns for purchasing realized varigné&suivalently, investors who are
sellers of variance and are providing insuranceth® market, require substantial
positive returns. This may be rational, since theafation between volatility shocks
and market returns is known to be strongly nega#imd investors want protection
against stock market crashes. Along these lineksiBand Madan (2006), and Chabi-
Yo (2012) theoretically show that the skewness lamdosis of the underlying market
index are key determinants of the market variamsle premium. Indeed, Bakshi and
Madan (2006), Bollerslev, Gibson, and Zhou (20BBkaert and Hoerova (2013), and
Bekaert, Hoerova and Lo Duca (2013) argue thaintheket variance risk premium is
an indicator of aggregate risk aversioA. related interpretation is due to Bollerslev,
Tauchen, and Zhou (2009) and Drechsler and Yar6al(? who interpret the market
variance risk premium as a proxy of macroecononsik (consumption uncertainty).
They show that time-varying economic uncertaintyl an preference for the early
resolution of uncertainty are required to generat@egative market variance risk
premium. Zhou (2010) shows that the market variansk premium significantly

predicts short-run equity returns, bond returng] eredit spreads. Consequently, the

! For empirical evidence of the negative varians& premium on the market index, see Carr and Wu
(2009) and the papers cited in their work.

% A variance swap is an over-the-counter derivatioetract in which two parties agree to buy or el
realized variance of an index or single stock dutare date.

% More specifically, Bekaert, Hoerova, and Lo Du@®13) show the interactions between monetary
policy and the market variance risk premium, sutiggghat monetary policy may impact aggregate risk
aversion.



author argues that risk premia in major marketsaain the short- run and that such
comovement seems to be related to the market wariask premia. Campbell, Giglio,
Polk, and Turley (2014), using an intertemporaliteasset pricing model (CAPM)
framework, argue that covariation with aggregatdatdidy news has a negative
premium. Finally, Nieto, Novales, and Rubio (20Bhow that the uncertainty that
determines the variance risk premium —the investees of deviating from normality
in returns— is also strongly related to a varietymacroeconomic and financial risks
associated with default, employment growth, condionpgrowth, and stock market
and market illiquidity risks. At this point, it ifair to argue that we understand the
behavior of the market variance risk premium argl ifhplications for financial
economics.

However, it is surprising how little we know abdbe variance risk premium at
the individual level. Bakshi and Kapadia (2003bywlthat the variance risk premium
is also negative in individual equity options. Heeg Driessen, Maenhout, and Vilkov
(2009) show that the variance risk premium for ktoices is systematically larger,
that is, more negative, than for individual secesit They argue that the variance risk
premium can, in fact, be interpreted as the pricente-varying correlation risk. They
show that the market variance risk is negative d@alyhe extent that the price of the
correlation risk is negative. In a related papasraBchi, Trojani, and Vedolin (2014)
argue that the wedge between index and volatilely premia is explained by investor
disagreement. Hence, the greater the differencéeliafs among investors, the larger
the market volatility risk relative to the volatylirisk premium of individual options.
Even these papers are particularly concerned \Wwehbehavior of the market variance

risk premium, despite employing data at the indieidevel.



We argue that an analysis and the understandinfpeotime-series and cross-
sectional behavior of the variance risk premiunthatindividual level is lacking in the
previous literature. This paper partially covers tpap. More specifically, we analyze
the cross-sectional variation of the volatilitykrigremium §VRB at the portfolio level.
We employ daily data from OptionMetrics for the i@tard & Poor’s (S&P) 100 Index
options and for individual options on 181 stockduded at some point in the S&P 100
Index during the sample period from January 199G-eébruary 2011. We employ
options with one month to expiration. We calculs¥rRPfor each stock at the 30-day
horizon as the difference between the correspondiatized volatility and the model-
free implied volatility described by Jiang and Tig005). Similarly, we estimate the
market volatility risk premium using the S&P 10@éx as the underlying index. For
each month, using an individus/RPwith at least 15 daily observations, we construct
20 equally weighted portfolios ranking the indivadisVRP values according to their
betas with respect to the mark®RP. These volatility risk premium betas are estimated
over the previous month with daily data. Althougé lbriefly describe the time-varying
behavior of volatility risk premia for our 20VRPbeta-sorted portfolios and their betas
with respect to alternative aggregate sourcesskf the main objective of the paper is to
analyze the determinants of the cross-sectionahtian of average volatility risk
premia across our sample of 20 portfolios.

We find that the betas of tl®/RPbeta-sorted portfolios estimated with respect to
the markesVRR obtained from the S&P 100 Index options, rangenfr0.95 to 3.89,
where the portfolio with the most negative beta tineshighest average/RPand the
portfolio with the most positive beta presents time@st negative averageVRP

Therefore, we find both negative and positive ages/RPvalues ranging from 0.103



to -0.034 on an annual basis, while the averag&ehg¥RPis negative, as in previous
literature.

Regarding the cross-sectional variation of the tdglarisk premia, we find that,
independently of the preferences imposed, consompisk does not seem to explain
the cross-sectional behavior sYRP Factor asset pricing models seem to be more
useful in explainingVRPat the cross section. The key factors explainiregagesVRP
across our 20 portfolios are the market volatiligk premium and, especially, the
default premium. The risk premia associated withdafault premium betas are positive
and statistically significant even if we explicitlgcognize the potential misspecification

of the models. Moreover, we cannot reject the dvegecification of the two-factor

model and the cross-section@f is equal to 0.514, with an asymptotic standardrerr
of 0.211. Finally, our findings are related to d¢teask and financial market stress
conditions. More precisely, the cross-sectionaliatems of risk premia reflects the
different uses of volatility swaps to hedge defart the financial stress risks of the
underlying components of our sample portfolios.

This paper is organized as follows. Section 2 lyrieéscribes variance swaps and
volatility swap contracts and presents the alt@éreatisset pricing models that we
employ in the study of the cross-sectional varratb averagesVRP Section 3 contains
a description of the data. Section 4 discussesntheel-free implied volatility and the
estimation ofsVRPat the portfolio level. Section 5 presents thadeakaracteristics of
the 20sVRPbeta-sorted portfolios and some empirical residtag unconditionasVRP
beta estimates. Section 6 reports the main empfadings of the paper and discusses
the econometric strategy. Section 7 relates owteene to financial stress conditions.

Section 8 concludes the paper.



2. Theoretical Framework

In a variance swap, the buyer of this forward cacitreceives at expiration a payoff
equals to the difference between the annualizeidnvee of stock returns and the fixed
swap rate. The swap rate is chosen such that titeaco has zero present value, which
implies that the variance swap rate representgistkeneutral expected value of the

realized return variance:
EQRVA,, |= SWA 1
t tt+7r )~ t+T 1)
where EQ(0J is the timet conditional expectation operator under some riskiial

measure), RV&H is the realized variance of asset (or portfadidjetweert andt + 7,

and SV\{?HT is the delivery price for the variance or the &ade swap rate on the
underlying assed. The variance risk premium of assas defined as
VRR 4 = EtP(RVt?tH)' E2 (RVt?tﬂ) )

On the other hand, at expiration, a volatility swagys the holder the difference

between the annualized volatility and the volatiitvap rate,
NVO|(SR\{?I+T _SS\/\/:it+T) (3)

where sR\{iH is the realized volatility of assatbetweent andt + t, sSVﬁ” is the

fixed volatility swap rate, andN,,,; denotes the volatility notional. This paper anal/z

the determinants of the cross-sectional variatiowotatility risk premia. We therefore

define the volatility risk premium of assets follows,

SVRR,; = EP[SR\E.., )-EQ(sR\A, ) 4

Using the fundamental asset pricing equation, wankthat the risk premium of any

asset with rate of returnR?is given by



Coy’ (Mt,t+r ’Rta,lt+r)
EtP(Mt,t+r)

RR%+r =- (5)

where My ¢ is the stochastic discount factor (SDF). Therefgieen the definition of

the volatility risk premium, the following expreesi holds:

EQ (sR\f_},)= EY (sR\(iT)+ Cot’ (MPWT’SRV%”) (6)
E”(Myger)

Thus, using the payoff of a volatility swap, thedamental pricing framework implies

that

EtP|_Mt,t+r(SR\€t+r _SSW%+T) = EtPlMt,t+r(SVR|'-t%+r)I:O (7)

In this paper, the SDRM 4, is allowed to be based on either power, recursine
habit preferences or on alternative linear SDF ifipations based on state variables
potentially capable of explaining the cross-seatiovariation of volatility swaps. In
particular, we test the following models:

a) Model 1, C1, power utility with aggregate congtion:

u'(:|Z+T) :t+T _y
M =p—7 =P 8a
tt+r U'(Ct) Ct ( )

where C; is the aggregate consumption of non-durable ganud services,y >0
represents the degree of risk aversion, anid the subjective discount factor.

b) Model 1, C2, power utility with stockholder camsption, denoteg>HC:

cSHC R4
Mier =P C‘SHTC (8b)

c) Model 2, C1, recursive utility with aggregatensamption:



1

1-K |1-k
Uy {(1‘,0)03_/( +,0(Et (Utlfy) 1“’} 9)

where the non-observable continuation value is @pprated, as for Epstein and Zin
(1991), by the return on the market portfolio orrked wealth so that the corresponding

SDF becomes

{ 1 }1—/{ (10a)

1- : . - : o
wheren = 1_y and « is the inverse of the elasticity of intertempaabstitution.
-K

d) Model 2, C2, recursive utility with stockholdewnsumption:

SHC\ X 7
C 1 1-«
Mit+r = "{Ctsﬁc] { } (10b)

e) Model 3, C1, external habit preferences, aCampbell and Cochrane (1999):

C-X V-1
Ut:(t 1t_)y (11)

where X; is the level of habit and the SDF is given by

_ (Ser Car )
e85 o

where y is a parameter of utility curvatureS =C; - X;/C; is the surplus

consumption ratio, and the counter-cyclical timeyusy risk aversion is given by

¥/S - The aggregate consumption follows a random watktae surplus consumption

process is

St+1=(1- 95+ s + A(st)(cee1 -t - 0) (13)



whereg is the mean rate of consumption growghis the persistence of the habit shock,

and the response or sensitivity coefficiei(!st) is given by

Alst) = o y/1-gl1-20s -5) -1 (14)
where o, is the volatility of the consumption growth ratadalower capital letters

denote variables in logarithms.

f) Model 3, C2, external habit with stockholder samption:

Mt t+r =,0{ e
’ SHC ~SHC
S G

SHC ~SHC\ ¥
c ] (15)

g) Model 4, C1, recursive preferences with the masolatility risk premium as the

continuation value:

o
_| {Crer K 1 1-k
Mit+r —[p( C, j } {—SVRE‘ET} (16)

where sVRI{T, Is the market volatility risk premium.

<
X

h) Model 4, C2, recursive preferences with the reanolatility risk premium, and

stockholder consumption:

SHC\ X ¢
C 1 |1«
WAL S

1) Model 5: linear SDF for both the market retundahe squared of aggregate wealth:

Mit+r =@+ bRppr + CRr%\Hr (18)
As previously discussed, recent empirical work ¢t@ssistently shown that risk—neutral
volatility is higher, on average, than physicauratvolatility. Little work has been done
on theoretically characterizing the distance betwsath types of volatility, with Bakshi

and Madan (2006) and Chabi-Yo (2012) being two ptices. In both cases, the market



variance risk premium is derived as a functionhef standard deviation, skewness, and
kurtosis of equity returns. Therefore, the magretwhd behaviour over time of the
market variance risk premium may also be empigaalated to higher -order moments
of the equity return distribution. This suggestattla potentially relevant model to
explain the cross-sectional variation of volatilityk premia should explicitly recognize
higher-order moments of the underlying market phdfreturn. In particular, Bakshi
and Madan (2006) show that, when the SDF is a difigaction on both the market
return and the squared of market return, as inesgwn (18), then the variance risk

premium is a function of both the skewness and osist of the market and
M /R, <0 and 82M/aRZ >0.
j) Model 6: CAPM with the market volatility risk pmium:

M¢i+r =a+bsVRE], (19)
This may be justified by noting that Bali and Zh@012) show that the cross- section
of equity returns portfolios is explained by the rket, and also by economic
uncertainty proxied by the market variance riskngcen.
k) Model 7: multi-factor SDF with the market volay risk premium and the default
premium as the difference between the Moody's y@idBaa corporate bonds and the

10-year government bond yield, denobdeF . ; :

M¢t+r = a+bsVRE], +cDER.; (20)

The economic rationale of this model comes from fthdings of Zhou (2010) and
Wang, Zhou, and Zhou (2013), who show that the-fewel variance risk premium has
significant explanatory power for credit defaultagwspreads over and above the market
variance risk premium and the VIX. The predictibdity increases as the credit quality

of the credit default swap underlying companiegdetates.
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All these SDF specifications will be tested usinggeneralized method of
moments (GMM) framework with the same weighting mxaacross all test portfolios
to compare the performance of the models by theselanlagannathan (1997,
henceforth HJ) distance. Additionally, we employe thiwo-pass cross-sectional
regression approach of Fama and MacBeth (1973}hit case, we use the linear
versions of all previous discussed models and ialdade the simple CAPM with the
market portfolio return and extended models usimg market portfolio return, the
market volatility risk premium, the Fama—French HR&ctor, and the default premium

as additional pricing factors.

3. Data

We employ daily data from OptionMetrics for the S&PO Index options and for

individual options on all stocks included in the B&00 Index at some point during the
sample period from January 1996 to February 20his Vields a total of 181 stocks
used in our estimations. From the OptionMetricsadase, we obtain all put and call
options on the individual stocks and on the indék Wme to maturity between six days
and 90 days. Given that the options are Americgie,sit is convenient to work with

short-term maturity options, for which the earlyemise premium tends to be
negligible? We select the best bid and ask closing quotealtulate the mid-quotes as
the average of bid and ask prices, rather tharabtrtansaction prices, to avoid the well
known bid—ask bounce problem described by Bakslasipo,Gand Chen (1997). In

selecting our final option sample, we apply thealditers. We discard options with

zero open interest, zero bid prices, missing deftamplied volatility, and negative

implied volatility. We also ignore options with egme moneyness, that is, puts with a

“ See the evidence reported by Driessen, Maenhoditydkov (2009) who employ a similar database.

11



Black—Scholes delta above -0.05 and calls with ltadeelow 0.05. Finally, regarding
the exercise level, we employ out-of-the-money agi using puts with a delta above
-0.5 and calls with a delta below 0.5.

It seems reasonable to expect that aggregate ntacramic variables and market-
wide portfolios extensively used by researchersnwvieplaining the time series and
cross-sectional behavior of excess equity retuhmaild also be relevant factors in
explaining variance risk premia across assets. ihfse main criterion we follow when
collecting our data. As our option data, the marke¢trn for the S&P 100 Index and
individual stock returns and dividends are alscawmigd from OptionMetrics, while
portfolio return data are from Kenneth French’s s In particular, we collect
monthly data on the value-weighted stock marketfplaw return, the risk-free rate, the
SMB and HML Fama—French risk factors, and the mdomarfactor denoted MOM.

Additionally, yields for 10-year government bondsmnonth T-bills, and Moody’s
Baa corporate bonds are obtained from the FedezakrRe Statistical Release. The
default premium, denoted DEF, is the differenceween Moody's yield on Baa
corporate bonds and the 10-year government bordl yie

We obtain nominal consumption expenditures on noatlla goods and services
from Table 2.8.5 of the National Income and Proddmtounts (NIPA), available at the
Bureau of Economic Analysis. Population data anenfNIPA’s Table 2.6 and the price
deflator is computed using prices from NIPA’s TaBl8.4, with the year 2000 as its
basis. All this information is used to constructntidy rates of growth of seasonally
adjusted real per capita consumption expendituresiandurable goods and services
from January 1959 to September 2012. We also ugeegate per capita stockholder
consumption growth rates. Exploiting micro-levelkehold consumption data, Malloy,

Moskowitz, and Vissing-Jorgensen (2011) show tbagirun stockholder consumption

12



risk explains the cross-sectional variation in ager stock returns better than the
aggregate consumption risk obtained from nondurgbtels and services. In addition,
they report plausible risk aversion estimates. Thmploy data from the Consumer
Expenditure Survey (CEX) for the period March 1982November 2004 to extract
consumption growth rates for stockholders, the thesdt third of stockholders, and
non-stockholders. To extend their available timeqoefor these series, the authors
construct factor-mimicking portfolios by projectinthe stockholder consumption
growth rate series from March 1982 to November 2006 a set of instruments and
use the estimated coefficients to obtain a lonigee series of instrumented stockholder
consumption growth. In this paper, we employ theoreed estimated coefficients of
Malloy, Moskowitz, and Vissing-Jorgensen (2011) abtain a factor-mimicking

portfolio with the same set of instruments for &tamder consumption from January

1960 to September 2012.

4. Model-Free Implied Volatility and Estimation of the Volatility Risk Premia
Britten-Jones and Neuberger (2002) first derivedrtiodel-free implied volatility under
diffusion assumptions. They obtain the risk—heu¢ngbected integrated variance over
the life of the option contract when prices aretcwous and volatility is stochastic.
Jiang and Tian (2005) extend their paper to shat tieir method is also valid in a
jump- diffusion framework and, therefore, their hmdology is considered to be a

model-free procedure.
We calculate the model-free implied variance de(moMFIth"Hr by the

following integral over a continuum of strikes:

. :ZTCLH,(K)/B(t,t+r)—sza>{S[ /B(1t+1)-K 0)
0

dK (1)
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where Cﬁt”(K) is the spot price at timeof az-maturity call option on either an asset
or indexa with strikeK, B(t,t +7) is the timet price of a zero-coupon bond that pays

$1 at timet + 7, and S is the spot price of assatat timet minus the present value of

all expected future dividends to be paid beforedpton maturity. Expression (21) can

be accurately approximated by the following sumr@/@énite number of strikes:

MFIVE ., O il[gﬁm(Kj )+ gﬁt”(Kj_l)]AK (22)
=
where
K = (Kmaxr; i) K =Kpin+ j4K for j=01...,m
and

R ) cf}m(Kj)/B(t,t+r)—ma>{sta/B(t,t+r)—KJ- p)
gt,t+r(Kj)— K 2
J

For each time -to- maturity from six days to 60 slawe calculate the model-free
implied variance each day for each underlying atfsa&t has at least three available
options outstanding, using all the available optiantimet.’> For the risk-free rate, we

use the T-bill rate of appropriate maturity (int@igied when necessary) from
OptionMetrics, namely, the zero-coupon curve. fer dividend rate for the index we
employ the daily data on the index dividend yieldni OptionMetrics. To infer the

continuously compounded dividend rate for eachviddial asset, we combine the
forward price with the spot rate used for the favprice calculations. We obtain the

mean continuously compounded dividend rate by avegathe implied OptionMetrics

®> The window from six days to 60 days correspondghéomaximum range of time to maturity we allow
in the necessary interpolation to have enough ogt@very day in the sample with 30 days to maturity
See the discussion below.

14



dividends. Finally, we annualize the model-free liegbvariance using 252 trading days
in a calendar day.

The specific implementation follows the approachliaing and Tian (2005). It is
well known that options are traded only over a tedinumber of strikes. In principle,

expression (22) requires the prices of options vethkes K; for j=0L...,m.

However, the corresponding option prices are ngenlable because these options are
not listed. We apply the curve-fitting method toa&t—Scholes implied volatilities
instead of option prices. The prices of listedélind puts with different strikes) are
first transformed into implied volatilities usinge Black—Scholes model and a smooth
function is fitted to the implied volatilities ugjncubic spline§. Then, we extract

implied volatilities at strikesK; from the fitted function. Finally, we employ eqioet

(22) to calculate the model-free implied variansang the extracted option prices.

It is sometimes the case that the range of availsivikes is not sufficiently large.
For option prices outside the range between theiimar and minimum available
strikes, we also follow Jiang and Tian (2005) asd the endpoint implied volatility to
extrapolate their option prices. This implies ttreg volatility function is assumed to be
constant beyond the maximum and minimum strikemally, discretization errors are
unlikely to have any effect on the model-free iraglivariance if a sufficiently larga,
beyond 20, is chosen. In our case, we employ #mat equals 100.

At each timet, we focus on a 30-day horizon maturity, interpatatwhen

necessary using the nearest maturitiesand 7, following the procedure of Carr and

Wu (2009). The interpolation is linear in total izauce:

® As pointed out by Jiang and Tian (2005), the cdittimg procedure does not assume that the Btack
Scholes model holds. It is a tool to provide a t;ene mapping between prices and implied volelit

" Jiang and Tian (2005) discuss this approximationreand the (different) truncation error that aris
when we ignore the tails of the distribution acrssies. In our case and to avoid the truncatmmorewe
use 3.5 standard deviations from the spot undeylgnice as truncation points.

15



L 1| MRV ey (rz—r)+MFIVat+T ro(r-14)
Wi =7 (2 -1)

(23)

We use the square root of the model-free impliedanae to approximate the model-

free annualized implied volatility as:

SMFIV 47 = MFIVG 4 (24)

For each day in the sample period, we also caleula realized variance over the same
period as that for which implied variance is obeglrfor that day, that is, for 30 days,

requiring that no more than 14 returns be missiomfthe sample:
a _1 d 2
RVt,t+r __th+S (25)
r s=1

where R denotes the rate of return adjusted by dividends splits. As before, we
annualized the realized variance and take the squamt to obtain the realized

volatility:

SRV 47 = R4 6]2

Finally, for each asset and the index, we calculagevolatility risk premiumsVRR at
the 30-day horizon as the difference between tihesponding realized and model-free

implied volatility:

SVRR 47 = SRt+7 = SMFIViG 47 (27)

We next construct 28VRPbeta-sorted portfolios using the following proceduwe
estimate rollingsVRPbetas for each month using daily data over theipue month on
the individualsVRPand the markesVRR Each month, we rank aiVRP betas and
construct 20 equally weighte¥RPbeta-sorted portfolios. Portfolio 1 contains thesin
negativesVRP betas, while Portfolio 20 includes the most puesisVRP betas. The

components of all portfolios are updated every fnahiring the sample period. All

16



portfolios have approximately the same number ctigsges, with an average of 5.3
securities per portfolio, and the asset must haveast 15 daily observations to be
included in the portfolios.

Figure 1 displays the behavior of portfolios 1, 48d 20 sorted bgVRPbeta, as
well as the markesVRR Note that we display theVRPof the market using options
written on the S&P 100 Index, so that the seriggainoed in Figure 1 is not the cross-
sectional average of the individusV/RPR For the portfolios P10B and P20B and the
market, the positive peaks coincide with periodshigh realized volatility. Portfolio
P1B tends to have a positis¥ RPeven during normal economic times, while portfolio
P20B presents a negatig® RPduring normal and expansion months and a positive
sVRPduring bad economic times. As expected, given tiasVRPbeta of portfolio
P20B is as high as 3.89, its behavior closely Wdldhe markesVRR but with more
extreme peaks. In any case, this figure suggeststhie ranking procedure generates
sufficiently different cross-sectional behaviour jigstify the analysis of the cross-

sectional empirical results under this sorting abteristic®

5. Volatility Risk Premium Characteristics at the Portfolio Level

Table 1 reports the basic characteristics of ours¥BP beta-sorted portfolios. The
average ¥RP values are 10.3% and -3.4% for portfolios P1B B20B, respectively.
All of these figures are given in annualized terds.expected, given the well-known
evidence provided, among others, by Carr and W@9R0the markesVRPis, on
average, negative and equal to -1.4%. The avenageabzedsVRPobtained directly

from daily data present a very similar pattern,hwihe range going from 10.1% to

8 We also construct an alternative set of 20 padsobased on theVRPlevel. Using thesVRPon the last
day of the previous month, we rank aWRPvalues from the lowest (more negative) to the &agh
Portfolio 1 contains the assets with the lows¢RR while portfolio 20 includes securities with the
highestsVRP Our main empirical results and conclusions wél thecked employing this alternative
ranking to analyze the robustness of our results.
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-4.5%. The magnitude of th&/RP cross-sectional differences is large and seems to
justify the study of their determinants. These ages indicate that investors may have
very different volatility investment vehicles deemg on whether they go long or short
on volatility. We tend to identify the purchase \aflatility as a hedging instrument
against potentially large stock market declinese ®vidence reported in Table 1
suggests that, on average, going long on volatidég also lead to substantial gains,
depending on the portfolio for which investors huafatility.® The standard deviations
of the sVRPvalues of these portfolios suggest that portfoliath a higher average
sVRPand, especially, those with a more negative awesafiRPare the most volatile
portfolios in terms okVRPpayoffs. As pointed out before, Figure 1 alsoe@8 the
highly volatile behavior of thesVRP of P20B, followed by the relatively smoother
behavior of P1B.

The fifth column of Table 1 contains tils% RPbetas of each of the portfolios
relative to thesVRPof the market index. Using monthly data, we estéma market

model type of ordinary least squares (OLS) regoessf the following form:

SVRR; ., =a+BSVRE ; + & 147 (28)
where sVRI{Jﬁ” is the volatility risk premium of each of the 2@rgolios, and

sVRI{{L,is the volatility risk premium of the market indésom January 1996 to

February 2011. TheVRPbetas reflect the construction criterion, with anditional
sVRPbetas of -0.95 for P1B and 3.89 for P20B. As mdhse of average volatility risk

premia, the cross-sectional differencesWRPbetas are large.

° As discussed by Carr and Lee (2007, 2009), dtieet@oncavity’s price impact associated with Jelssen
inequality, the difference between the value ohdaance swap and the value of a volatility swapetels

on the volatility of volatility of the underlyingsaet. If we recognize this potential bias and adjus
estimated volatility risk premia accordingly, thesgkrsion between the volatility risk premia across
portfolios remains. See Burashi, Trojani, and Ved(2014) for a similar approximation.

18



Given that, for each month during the sample periwe can identify the
underlying components of the 20 portfolios, we gkite the portfolio returns of the 20
sVRP beta-sorted portfolios. In Table 1, we also digplae market betas of the 20
portfolios with respect to the US market portfoifmex and the S&P 100 Index. As
with the standard deviation, the cross-sectionabbi®r of market betas presents a U-
shaped pattern, with market betas being espedmdliy for portfolios with a more
negative averageVRP Portfolio P20B has the highest return beta, &ithalue as high
as 1.52 when measured relative to the S&P 100 Inetexn.

Finally, the last column of Table 1 contains therage relative bid—ask spread of
the options associated with the components of thpdtfolios. The options traded on
the components of portfolios with positive and higheragesVRP values may be
extremely illiquid. If this is the case, the replimg strategy employed to obtain
synthetic variance swaps associated with illiquodians may be more costly than in
other cases. However, the average bid—ask spreéldsts precisely the opposite. The
portfolio P1B contains, on average, the most ligopdions, while P20B presents the
highest relative bid—ask spread across the 20gdotf Therefore, on average, market
return betas and bid—ask spreads are higher fanth@ortfolios with the highestVRP
betas.

Table 2 contains the correlation coefficients betweepresentative portfolios
sorted bysVRPbetasand the markesVRP. Panel A employs monthly data, while Panel
B displays the results with daily data. As expegctpden its highly negativeVRPbeta,
the correlation between portfolio P1B and the reétthe portfolios becomes
increasingly negative. Not surprisingly, the caatiein of these portfolios with the

market sVRP displays an increasingly monotonic relation goifigm a negative

19



correlation of -0.366 for P1B to a positive cortela of 0.863 for P20B. A similar
pattern is found when using daily data.

Table 3 reports the correlation between the mar®éRP and several
macroeconomic and financial indicators. The coti@abetween the excess market
return and the marketVRPis negative and equals -0.273. This is well kncawal
implies a negative correlation between market retiand realized market volatilities.
Thus, going long on the market volatility swap pd®s a hedging investment vehicle
for moments of extremely high market volatility. WMever, the compensation for this
hedging strategy is, on average, negative. Thdtsesiso show a negative correlation of
the marketsVRPwith consumption growth, although the correlatisrmore negative
for aggregate consumption than for stockholder aowion. The correlation with the
HML and momentum factors is positive, while theretation with the default premium
is also positive and equals 0.075. As expected,ctiteclation between the default
premium and either the excess market return orwwopson growth is negative, being
especially negative with respect to aggregate aapson growth.

Panels A and B of Table 4 contain the full-samgMRP betas for five
representativesVRP beta-sorted portfolios controlling for well-knowaggregate risk
factors. The robustness of the magnitudes oSWRPbetas, reported again in the first
column of Table 4, is clear across all portfolizelependently of the factors employed
in the regressions, portfolio P1B has a negativia,b&hile P20B has a very high but
positive volatility risk premium beta. In all casese employ heteroskedasticity-
autocorrelation (HAC) robust standard errors. Tdlation between theVRPbetas and
the average volatility risk premia of all portfadios maintained across all aggregate
factors. We may conclude that, fsRP beta-sorted portfolios, the volatility risk

premia are especially explained by the mar®é¢RE the excess market return, the
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default premium, and consumption growth. HowewfRP betas do not seem to be
significantly different from zero when stockholdepnsumption growth is used.
Overall, we conclude that the unconditional betathese state variables are, in most
cases, statistically different from zero, even whves employ all three explanatory

variables simultaneously.

6. Cross-Sectional Variation of Portfolio Volatility Risk Premia

6.1 GMM Estimation and Tests

We next test the competing specifications givennimdels 1 through 7 described in
Section 2 using the GMM estimation procedure and sat of 20 portfolios as test
assets. Given the theoretical framework of SecBpwe work with the volatility risk
premia of the 2BVRPbeta-sorted portfolios. We define @+1) x 1 vector containing
the pricing errors generated by the model at tinfde firstN conditions are the pricing
errors of the model when explaining the volatilitgk premia ofN portfolios. The last
condition forces the SDF to go to its mean valueMore precisely and using the
fundamental pricing equation given by (7), the duling vector defines the moment

restrictions:

(M, - 4)sVRP
SVRR-aly +
f(0,a,u)=E Poaly U (29)
Mt —u
where sVRR is theN x 1 vector of volatility risk premia of thBl portfolios at timet,

1y denotes am x 1 vector of ones,M;(6) is one out of the seven specifications of

equations (8) to (20), anfl is the vector of the preference parameters foih eac

21



particular specification’ The inclusion of the parameter enables the separate
evaluation of the model's ability to explain themigoral pricing behavior of the
competing specifications and the cross sectiorot#twity risk premia. So, ifa is zero,
we can conclude that the model presents a zer@a@@ericing error over the sample
period. We define a vector containing the samplerayes corresponding to the
elements of as

.
ft (9,0,,“)
gr(@a.u)=—— = (30)

and the GMM minimizes the quadratic form,

ot (6..4) Wr ot (6.0.1) (31)
whereW, is a weightingN+1) x (N+1) matrix.

For the GMM estimation and to compare the perforeeaof the models, we
employ the pre-specified weighting matrix that @m$ the matrix proposed by HJ. It
weights the moment conditions for tNetesting portfolios using the (inverse) matrix of
second moments of the volatility risk premia of set of 20 portfolios. Moreover, as
for Parker and Julliard (2005), the weight of tastImoment condition is chosen large
enough to ensure that significant changes in thaight have no effects on the
parameter estimates. A weight of 1000 for the lasiment condition ensures the
stability of the estimator for the mean of the S@kh respect to different initial

conditions. Hence, the pre-specified weighting masr

[HI oy 32
Wr = Oy 1000

where

19 See Parker and Julliard (2005), and Yogo (2006)f@mples of GMM estimation using the same
estimation strategy. In the empirical estimatioe, take the subjective discount rate as a fixedrpeier
that is equal to the inverse of the risk-free mter the sample period.

22



T ' -1
HJ = {(]/T)Z SVRPSVRP } (33)
t=1

and Oy is anN-dimensional vector of zeros. Given the unknowrtritistion of the
performance test, we follow Jagannathan and Wa@g6()1 HJ and Parker and Julliard
(2005) to infer thep-value of the test. The evaluation of the modelfggarance is
carried out by testing the following null hypothesi

Ho : T[6(6,a.1)]? =0 (34)

where the HJ distance is defined as

5=+ g1 (0.a,u) Wrar (6,0,1) (35)
It is well known that a limitation of the HJ distanin comparing asset pricing models is
that it does not allow for statistical comparisanocaag competing models. Chen and
Ludvigson (2009) propose a procedure that can leel i3 compare any number of
multiple competing models, some of them possibly-tiwear. The benchmark model is
the model with smallest squared HJ distances ancongpeting models. The authors
are able to compute the distribution of the differes between squared HJ distances via
a block bootstrap, where the reference distanaesponds to that with the smallest HJ
distance among all models. Kan and Robotti (200B, lkereafter) also develop a
methodology to test whether two competing model®tihe same HJ distance and they
show that the asymptotic distribution of the teatistic depends on whether the models
are correctly specified or not. In this paper, welg the KR test of the comparison of
the HJ distances of two alternative specificatiamsder potentially misspecified

models!?

1 We employ a version of their test for which theFS@ibes not have to be necessarily linear.
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We briefly described their comparison test whichoants to obtaining the

asymptotic distribution 05'12 - 3'22. Let d; = syt — Syt , Where
] 2 ]
St = 2¢/SVRPM 14 — (qol SVRI?) -2¢ 1y - 0% , wheregy =Wg,

' 2 '
Sor = 2¢)SVRPM 5 — (goz sVRI?) -2p, 1y - 9%, whereg, =Wg,

Under the null hypothesis QAflz = 322 20,
52 52 _(s2_s2]°
JT [51 - 0% —(51 - 0% )] ~ N(0vq) (36)
where vy = z E(d;d{_;). In the empirical application, this expression cae
T=-00
approximated using the well-known Newey—-West (19&timator given by,
k

W=y [J]$§(dtd;_,)

r=-k

6.2 GMM Empirical Results

The empirical results using the GMM framework ddst above and the 20VRP
beta-sorted portfolios are reported in Table 5.eP@ncontains the results of the SDF
specifications given by models 1 to 4 under bothdhgregate consumption growth of
non-durable goods and services (NDC) and stockhadawvth consumption growth
(SHC). The last column of Table 5 displays the llathce given by expression (35)
with the correspondingp-value in parentheses. All alternative specifigagioare
rejected. At the same, the estimators of the peafar parameters across models tend to
be estimated with a lot of noise. For all prefeeemstimators, standard errors are

reported in parenthes&s.

2In all cases, we check the shape of the objedtimetion when we minimize the weighted average
pricing errors according to expression (31) for plaeameters estimated under the power, recursik, a
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Regarding recursive preferences and power utilityd afor stockholder
consumption, with the exception of recursive preiees with the market return as the
proxy for continuation value, the magnitudes ané #ign of the risk aversion
coefficients are systematically reasonable. Founsee preferences with the market
SVRP as the continuation value, the risk aversion ccefit is equal to 10.14.
Unfortunately, in this case, the sign of the etafstiof intertemporal substitution is
negative. A systematic difference when using ongr@pmation of the continuation
value or another relies on the sign of the eldgtiof intertemporal substitution. When
we employ either aggregate consumption growth ockstolder consumption growth
and market wealth, the signs of the elasticityméitemporal substitution are positive
and less than one. However, when we use marketiltglawaps, the elasticity of
intertemporal substitution becomes negative fohlgpes of consumption growth.

We also report the results using the habit preftsenfor both types of
consumption. It is important to notice that the emal implementation of the model
described by equations (11) to (15) simultaneoaslymates all preference parameters
and the surplus consumption process. To provideesotaition about the behavior of

the resulting time-varying risk aversion given pyS; , where the curvature parameter

estimator is reported in Table 5 and the surplusgmption is obtained using equations
(13) and (14), Figure 2 displays the market vatgtiisk premium and the two-month
lagged changes of risk aversithWe observe how the behavior of risk aversion
changes follows the previously available payoffs valatility swaps. Indeed, the
correlation coefficient between both series isaagd as 0.47. In any case, under the

habit preference models, risk aversion estimates 2a#6 and 2.22 for aggregate

habit preference specifications. The minimum vabfethe functions corresponds to the parameter
estimators reported in Panel A of Table 5. The ltesstrongly suggest that the numbers reported are
robust to a large number of alternative initial dibions.

3 This figure is constructed using stockholder comstion growth.
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consumption growth and stockholder consumption grpwespectively, but the

estimated coefficients are not statistically défetr from zero. In addition, the average
pricing errors are statistically different from aeand the pricing specification is
rejected with g-value of the HJ distance of 0.0101.

Panel B of Table 5 contains the results of thealif@DF specifications given by
models 5 to 7. As in all previously analyzed modele linear specifications are
rejected. The parameters across the specificatismg) either the marketVRPas a
factor or the SDF with skewness and kurtosis atenated with low precision. The
average pricing errors are all negative and sitzdibf different from zero. Interestingly,
the slope parameters of the two-factor model with marketsVRP and default are
negative and statistically different from zero, @hisuggests that the risk premia
associated with both risk factors are positive statistically significant.

We next empirically investigate whether competingdeds exhibit significantly
different sample HJ distances. If our alternatipecsfications fail to find differences in
significance across models, it would imply that fireposed factors are too noisy to
explain the cross-sectional differences and to lcolecthat one model is superior to the
others. We therefore employ the test statistic iy equation (36) based on the
differences between the square of the HJ distafmes$wo given models. Table 6
reports the empirical results. The numbers in thisle represent pairwise tests of
equality of the squared HJ distances for all alittve specifications of SDF linear and

non-linear models. We report the differences betwke sample squared HJ distances
of the models in row and columnj, or 3i2 —3j2. For example, given that the HJ

distance of the power aggregate consumption model Panel A of Table 5 is 0.7078
and the HJ distance for the same model with stddeinaonsumption is 0.7060, the

first number in the first row of Table 6, whichdgual to 0.0026, is obtained as 0.7078
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—0.70686. As discussed above, the asymptotic distributiothis test statistic allows for
misspecification of the models. The associgte@lues are provided in parentheses.
The results suggest that, generally, there is tadis§cal significance between the
competing models when we employ the HJ distance. diily important exception is
the model that combines the market volatility nglemium and the default premium as
factors™® The linear SDF on the market volatility risk premi and default premium is
statistically superior to all the other models, hwithe exception of the recursive
preference specification using aggregate consummgrowth and with either market

wealth or the markefVRPas continuation values.

6.3 Two-Pass Cross-Sectional Estimation and Tests

A test of the competing asset pricing models ofdeéerminants of the cross section of
volatility risk premia using the models’ beta spieaitions may help clarify matters. In
particular, we now test the models described balsmg our 20sVRP beta-sorted
portfolios. In all casesdg is the zero-beta rate amyj, for k = 1, .... , Kare the risk
premia associated with thi€ aggregate risk factors that drive the cross-seation
variation among volatility swap payoffs for our s#t20 portfolios,p = 1, ...,20, as
follows,

a) Model 1: power utility with both aggregate comgiion and stockholder

consumption:

ElsVRR. ;)= 1o + AnacfSP (372)

E(sVR ,t+,)= Ao + AshcB& (37b)

4 A model that recognizes the skewness and kurtddise underlying market return is also statistical
superior to the one-factor model with the maéRP
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b) Model 2: recursive utility with both aggregat®nsumption and stockholder

consumption and market wealth and the market Vityatisk premium:

E[sVRR 47 )= Ao + AngoBP + AmBBE (38a)
E(sVRI?ﬁH): Ao + AshBE + A 8P (38b)
E(sVR@?” ) =0 + AndcBE + AumBhsvip (38¢)
E[sVRR. 7 ) = Ao + AsnoBE + ArpBleurp (384)

c) Model 3: habit preferences with time-varyingras/ersion:
Using the expression of risk aversion under thethpabference model, we can write the

consumption surplus & = y/RA , whereRA is the time-varying risk aversion. Then,

by taking logarithms in expression (12), the SDFR waitten as
In(M t’H,) = NP7 TR O] 4 1n p— Gy, + A4y (39)

which we write as a beta factor model,

E(SVRE’,?”): Ao + Andcﬂcp + /]ra,Brg (40a)
E(SVRE),?+T ) =Ap + /]shogsrz: + /]raﬁrg (40Db)

d) Model 4: the CAPM with market wealth:
E(sVRl{?”): Ao +AmBP (41)
e) Model 5: the Bakshi—Madan (2006) model with keigbrder moments:
E(sVRﬁﬁ’ﬂ): Ao + AmBP +/13kku3r22 (42)
d) Model 6: the CAPM with the market volatility kipremium as the only risk factor:
E[SVRRR, ;)= Jo + By (43)

e) Model 7: a two-factor model with the market vibiky risk premium and the default

premium:
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E(SVRE?H ) =Ao + Ag/rpﬁrgsvrp + Adef ﬁdpef (44)

f) Model 8: a three-factor model with the marketatidity risk premium, the default

premium, and the HML Fama—French factor:

ElsVRRE, ;)= Jo + AT BBeurp *+ Adet Bl + AnmiB, (45)

g) Model 9: a four-factor model with the market atdity risk premium, the default

premium, the HML Fama—French factor, and marketithea

E(SVRI?,?+T ) =Ao + /‘Q/rpﬂr%svrp+ Adefﬁdpef + Ahmlﬁhpm| +AnBh (46)

Therefore, we now test the linear versions of tleelas using the alternatiwe-factor
beta specifications described above in which tHatWity risk premia are linear in the

volatility risk premium betas, that i€(sVRF= XA, where X =[1y,8] and

A= [/10 ,/1'1]' is a vector consisting of the zero-beta raig, and the risk premia on the
K factors, A; . The pricing errors of thM portfolios are given by
e=E(sVRP- X1 (47)
As a goodness- of- fit measure of the competingetspdve employ the cross-sectional

R? defined by Kan, Robotti, and Shanken (2013, KR®dfter) as
R2=1-2 (48)
where theQ statistic given by
Q=¢V le=E(sVRPV 1E(sVRP - E(sVRP)'V‘lx(X\/‘lx)_1X\/‘1E(sVRF)

represents the aggregate pricing errors @yd- epV "1e0 denotes the deviations of the

mean returns from their cross-sectional averagi, wi

& :[| NN (1'Nv‘11N )_11'Nv‘1}E(sz|%
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andV is the variance—covariance matrix of the portfeladatility risk premia. As KRS

point out, theR? statistics given by (48) is a relative measurehef goodness- of- fit

since it compares the magnitude of the model's ebgplereturn deviations to that of
typical deviations from the average expected rethtoreover,0 < R? <1 and R%is a

decreasing function of the aggregate pricing erf@rsrhus, R? given by (48) is a

reasonable and well-defined measure of goodnesgit.dlote that, in fact, we employ

R?for average returns rather than the average ofhﬂwﬁ? values.
In addition, KRS show how to perform a test of wWiegtthe model has any

explanatory power for pricing assets cross-sechiyania other words, they test whether

we can reject the null hypothesis Bf =0. The asymptotic test is given by

AK £
TR? = - Zixi 149

where thex’s are independenxz(l) random variables and th§ sare theK nonzero

eingenvalues of
-1 ~
[[5\/ 1p-pv iy (1;\,v 18 ) 1NV ‘1/3}Var(/11)

whereVar()All) Is the expression adjusted by errors-in-the-végialnd misspecification

of the modef? In particular, the asymptotic distribution df under the misspecified
models is
" A .
JT(1-2)% Nlog 41.var(h) (50)

WhereVar(}I): > E(vwv{—;) and

r=-o0

!> Thep-values to test the nulg : R? =0 are calculated as before, using the proceduragdnhathan
and Wang (1996), HJ and Parker and Julliard (2005).
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Vi (-2 - (m-na + H z w (51)

var whentruebetas EIV adjustment misspeciftationterm
with

= [/‘o,t Aee - fo )J = [/‘0'(/11 - f)J Uy =€V H(sVRR - E(sVRP)

!

w =Mt - )z =[o,(ft - f)'Q‘lj

1o 12
H={XV =X
where @ is the variance—covariance matrix of the fact@saded byf; .
Finally, we present the test for comparing two cetimg models. Suppose

M; #M, and0 <R = R <1. Then
~o ~o) A -
ﬁ(Rl —Rz)_> N0, > E(d¢d—;) (52)
r=-o0

where
A1 2 2
di =Qo (Ult —2uy My — U3 +2U2tM2t)

Uy =€V H(sVRP-E(sVRP) anduy = eV 1(sVRR - E(SVRP))

6.4 Two-Pass Cross-Sectional Empirical Results

As in Section 6.3, Panel A of Table 7 containsrdsilts of the two-pass cross-sectional
regressions using consumption-based factors, Wialeel B of Table 7 displays the
results concerning factor-based models.

In all cases, we adapt the testing framework dssmisabove to the Fama-—
MacBeth (1973) two-pass cross-sectional methodolatpere we estimate rolling betas
using the first 60 months of the sample as a figstimation period and then use a
rolling window of 59 months of past data plus thentt in which we perform the

cross-sectional regression with the 20 portfolidence, for each monthwe always
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employ a beta estimated with 60 observations. Mareobelow all risk premia
estimators, we report thp-values associated with the traditional Fama—MadtBet
standard error in parentheses and in brackets,thétistandard error adjusted for errors
in variables, and the potential misspecificatiortited model as captured by expression
(51). We also provide two measures of goodnessfitoM/e report the mean absolute
pricing error MAE) calculated as

20

1
MAE=_— >
20 55

& | (53)

where f_ep Is the mean pricing error associated with eacthef20 portfolios. The last

column of Table 7 reports the? value given by equation (48), where below we digpla
the p-value for the test of the null hypothesis givenFR%/: 0 from expression (49) and

in brackets we report the standard erroRGf under the assumption that R? <1.
Regarding consumption models, the results sugbestiie standard errors of the
risk premia estimators are very sensitive to paaemhodel misspecification. At the
same time, in most cases, the estimator of the-lzet@ rate is statistically different
from zero independently of the adjustment. Theselte already put into question the
validity of the models. Indeed, all risk premia @sated with consumption growth,
either aggregate consumption or stockholder consompare not statistically different
from zero. Consumption risk does not seem to beegrin the cross section of the
volatility risk premia. The only statistically sificant risk premia are the market
portfolio return in the case of the recursive prefee model with aggregate
consumption growth and that related to the marlaatiity risk premium in the
recursive model when we approximate the continnatialue with volatility swaps
rather than with the market portfolio return. Aseadhy suggests, the sign of the

statistically significant risk premium associated¢hwmarket wealth is positive and it
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becomes negative when we employ the maskéRPunder recursive preferences. For
habit preferences, the risk premium is negativelated to changes in risk aversion,
with ap-value of 0.096, when we employ stockholder congiongrowth but it lacks a

lot of precision when we use aggregate consumpfiohwo additional results of Panel

A are relevant. First, th&IAE values reported in Panel A tend to be higher thase of
Panel B. Second, for all models, we cannot rejéet null hypothesis th&?is

statistically equal to zero, since the standardrsrof the R?values suggest all models
are estimated with a great deal of noise.

It may be easily the case that consumption risdbie to explain the cross section
of volatility risk premia as long as we introdugalaguity in the SDF. Under ambiguity
aversion, Miao, Wei, and Zhou (2012) show thatrtierket variance premium can be
generated without resorting to exogenous stochastatility or jumps. By calibrating
their model, they conclude that 96% of the markatiance risk premium can be
attributed to ambiguity aversion. Unfortunatelyisinot clear how their approach can be
extended to test the models cross-sectionally atitdmarket data.

Panel B of Table 7 shows that factor-based modgitam the cross section of
volatility risk premia much more accurately. In dbr cases, the asset pricing
specification is not statistically rejected. Thesedels always include the marlatRP
and the default premium. They are also the modélsalowerMAE. It is also true that
these models with HML and the excess market retamsdditional factors are not
rejected, but the coefficients associated withegithe excess market return or the HML

factor are not statistically different from zeroowkver, in all three cases, the market

16 Understanding volatility swaps as hedging produsts theoretically expect a negative coefficient
when regressing volatility risk premia on risk aien betas as in expression (40).
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volatility risk premium beta is significantly pridewith the expected negative sitn.
Again, in all three cases, the default risk premibata is positive and statistically
different from zero. Hence, the higher the defédta, the higher the average payoff
expected from volatility swaps in the cross sectiimerefore, we find that, on average,
the marketsVRPIis priced across portfolios and investors are camspted for bearing
credit (default) risk. The two-factor model for atlity risk generates statistically

significant risk premia of -0.006 and 0.012 for kedrvolatility risk and default risk,

respectively. TheR?of the two-factor model is equal to 0.514 and ististically
different from zero, with a standard error of 0.24Figure 3 displays the average
realizedsVRPagainst the fitted value for a selection of agsing models. The two-
factor model presents a better visual fit acrobsnadels. In any case, the difficulty of
the theoretical two-factor model in explaining polfo P20B must be recognized. The
model generates a negative payoff for this podfolvhich is too extreme (too highly
negative) to obtain a more precise linear fit retato actual data.

Finally, Table 8 contains the pairwise tests of ady of the two-pass cross

sectional regressionﬁ%zvalues for alternative factor pricing models usthg 20sVRP

beta-sorted portfolios. It contains the pairwisstdeof equality of the two-pass cross-
sectional regressiorﬂzvalues for alternative factor pricing models. Weam the
difference between the sample cross-sectidk@values of the models in rowand

columnj, R? -R?, and the associatggvalues in parentheses for the testRff = RY.

" The negative sign reflects the fact that the mavkéatility risk premium tends to be positive inemts

of high marginal utility.

'8 Similar results are found when we estimate the-pass cross-sectional regression using a constant
beta throughout the sample period. Moreover, when check all our empirical results using the
alternative set of 20 portfolios ranked accordimdghe level of the volatility risk premium, the vits are
qualitative the same independently of using congimmgbased models or factor-based specifications.
The two-factor model, with the market volatilityki premium and the default premium, presents &bett
competing performance than the rest of the modeddyaed in our research. All empirical results are
available upon request from the authors.
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As before, thes@-values allow for misspecifications of the modélfe role of the

default premium seems to be important for the esessional pricing of volatility
swaps, even under a statistical comparisoﬁ%\‘/alues. However, we cannot reject that

the R?values between the two-factor model and the moxeineed with the HML

factor and the excess market returns are equath©nother hand, the two-factor model
performs relatively well when compared with compgtimodels. In any case, the
results make clear the difficulty of distinguishibgtween the models from a statistical
point of view. For example, the power of the teséms to be low when we only
incorporate consumption data in the models or whercompare the two-factor model

with consumption-based specifications. These maalelestimated with a considerable
amount of noise. We should not simply compare thiatpestimates of thdR? values.

As pointed out by KRS, it seems reasonable to fasusndividual R?values rather

than on differences across models.

7. Why Does the Default Premium Explain the Cross sectional Variation of
Volatility Risk Premia?

The default beta risk with respect to the volatilisk premia seems to be consistently
priced in our cross section. We next provide aaifive but rigorous explanation of this
finding. We employ the underlying components of 20esVRPbeta-sorted portfolios to
construct the corresponding 20 return portfolidse Tirst column of Table 9 reports the
results of regressing the rate of returns of th@@®@folios on the market return and the
default premium. We display the default return betae we control for the market
return. Similarly, the second column contains thefadlt return beta, as before
controlling for the market return, but now with pest to the St. Louis Fed Financial

Stress Index (STLFSI). The STLFSI measures theedegf financial stress in the
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markets and is constructed from 18 series: sevenest rate series, six yield spreads,
and five other indicators. Each of these varialdaptures some aspect of financial
stress. In this regard, it is a broader measuriahcial credit risk or financial stress

than the default premium. By construction, the agervalue of the index is equal to
zero. Thus, zero reflects normal financial marlatditions. Values below zero suggest
below-average financial stress, while values abaeeo indicate above-average
financial stres$? Increasing values of this index can thereforenberpreted in the same

way as increasing values of the default premium.

The empirical results from the first two columns Tdble 9 suggest a similar
interpretation. The behavior of the componentsatfplios P1B, P2B and P3B is very
different from the behavior of the underlying compats of portfolios P19B and P20B.
Recall that the first portfolios have, on averggesitive volatility risk premia, while the
last two portfolios have negative average volatilisk premia. Using either the default
premium or the STLFSI, the relation between tharret of the first three portfolios and
financial stress is positive. When default or thearcial stress index increases, the
returns of these portfolios increase. These paogdeem to be good hedgers relative to
financial stress. However, the last two portfolimmve negatively with respect to
financial stress. Even when the market return istrotled for, when measures of
financial stress increase, their return signifibadecreases. These results suggest that
investors may rationally hedge the financial stnesls of these components by buying
volatility swaps. For those assets negatively afig@dy financial stress, they are willing
to pay a high volatility swap to cover that creti#ncial risk stress. Therefore, on
average, we can expect a negative payoff from hgldong positions on volatility

swaps associated with these assets and a positerage payoff from assets moving

19 Seehttp://www.stlouisfed.org/newsroom/financial-strésdex/ for further details.
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positively with default risk. This is exactly what display in Table 9. It seems that the
differences in the cross section of 0sWRP beta-sorted portfolios reflect a very
different behavior of these assets with respectédit/financial stress. To complete our
argument, we should find evidence that the votgtiisk premia of portfolios P19B and
P20B move positively with financial stress. In othards, the volatility payoff of these
portfolios should cover increasing financial stres&. This is again what we report in
the third column of Table 9.

A second possibility to justify the pricing of defabetas in the cross section of
the volatility risk premia is to replicate the finds of Frazzini and Pedersen (2014)
with our data and sample period. A well-known enegirfinding in asset pricing is that
the relation between average returns and betagigbo flat relative to the theoretical
predictions of the CAPM. Frazzini and Pedersen 420drgue that an asset pricing
model with leverage and margin constraints is ableexplain this anomaly. By
leveraging and de-leveraging the tangency portfohgestors can control their risk—
return tradeoff according to their risk preferendéswever, some institutional investors
cannot use leverage and other investors who aeetal@mploy leverage are constrained
by their margin requirements. These investors auitrweight risky assets implying that
high-beta assets require lower risk-adjusted rstiinan low-beta assets. The authors
illustrate their argument by proposing a market trad¢ubetting-against-beta (BAB)
factor consisting of long levered low-beta stocksd ashort de-levered high-beta

securities:

R :ﬁ_lL(RtI:i-l —Rs )_LH(Rtlil —Rs ) (54)
¢ t

where L and H represent low- and high- beta respectively. Théh@s provide
convincing evidence that the BAB generates highamistent performance in each of

the major global markets and asset classes andhbaesults are independent of the
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asset pricing model employed. A key result is thkaen funding constraints become
more binding and the leveraged investors hit the@irgin constraint, they must de-
leverage. This suggests the required rate of rettipportfolio BAB increases and the
contemporaneous realized BAB returns tend to becwegative.

Using the rates of return of our 2¥RPbeta-sorted portfolios, and our sample
period, we construct the BAB factor using expresg®4). Table 10 contains the alphas
generated by our BAB factor when we control fori¢gp asset pricing risk factors. In
particular, we regress the BAB factor returns oa tharket, on the Fama—-French
factors, and on the three-factor model augmented thie momentum factor and the
aggregate liquidity measure of Pastor and Stamb#&2003). As expected, the BAB
portfolio consistently shows positive and statatic significant risk-adjusted returns.
However, when we control for the market excessrmeand either funding liquidity,
captured by the TED spread, or credit risk proxdgdhe default premium, the alphas
are no longer statistically significant. This susfgethat the tightening of funding
liquidity and borrowing constraints may explain tehavior of the extrem&/RPbeta-
sorted portfolios in terms of average volatilitgkipremia and their betas. As in the case
of the Frazzini and Pedersen (2014) paper, funtitngdity seems to have important

implications for asset pricing and, in particull@r, pricing volatility swaps.

8. Conclusions

Most of the literature dealing with variance or atdlty swaps is concerned with the
variance risk premium at the market level. The emmgi evidence shows that the
market variance risk premium has very useful ecaoanfiormation content. Given this

evidence, it is surprising how little research gme$ variance or volatility swaps at the

individual or portfolio level. This paper discussedl tests the cross-sectional variation
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of the volatility risk premia for a set of 20 patibs. We rank individuasVRPvalues
by their betas with respect to the market volgtiliisk premium. Accordingly, we
employ a set of 2@VRP beta-sorted portfolios to analyze the determinartsheir
cross-sectional variation. We show that beta wébpect to the market volatility risk
premia and the default beta have statisticallyiB@amt risk premia that help explaining
the cross-sectional variation of average volatiisk premia. This is especially the case
for the default premium factor and the empiricadule holds even if we allow for
potential misspecification of the models. Finallye relate our findings to
credit/financial stress risk and to funding liquydrisk. We show that the success of the
default premium in the cross-sectional variationtlod volatility risk premia can be
explained by the very different behavior that theerlying components of our 2¥VRP

betas-sorted portfolios have with respect to fimarstress risk.
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Table 1
Volatility Risk Premia: Descriptive Statistics aBétas,
Portfolios Sorted by Volatility Risk Premium Betdsnuary 1996 to February 2011

sVRP Market

Market .
SVRP Average  Average Standard Standard Beta Return Return Rela tive
Beta- L o (S&P100 Beta Bid-
Sorted MSVRhIT S[;/RIP Ii/lewa:]llon D%"ﬁtlon Market (Overall Beta Ask
Portfolios (Monthly) (Daily) (Monthly) (Daily) sVRP us (S&P100 Spread
Market)
Market)
P1B 0.103 0.101 0.179 0.188 -0.946 1.164 1.168 0.257
P2B 0.040 0.043 0.092 0.096 -0.229 1.042 1.050 0.256
P3B 0.024 0.023 0.082 0.080 0.056 0.893 0.922 0.259
P4B 0.018 0.014 0.072 0.067 0.223 1.017 1.008 0.265
P5B 0.009 0.005 0.066 0.061 0.307 0.758 0.771 0.260
P6B 0.001 -0.002 0.062 0.060 0.368 0.890 0.897 0.270
P7B -0.0002 -0.006 0.067 0.063 0.511 0.884 0.918 0.268
P8B -0.004 -0.010 0.067 0.063 0.558 0.964 0.987 0.261
P9B -0.010 -0.016 0.069 0.065 0.704 0.850 0.851 0.270
P10B -0.010 -0.017 0.077 0.073 0.819 0.931 0.977 0.273
P11B -0.019 -0.023 0.079 0.076 0.919 0.867 0.868 0.269
P12B -0.021 -0.027 0.086 0.083 1.011 0.949 0.958 0.281
P13B -0.026 -0.030 0.088 0.090 1.009 0.823 0.874 0.275
P14B -0.022 -0.032 0.099 0.099 1.219 0.972 1.013 0.279
P15B -0.028 -0.034 0.106 0.111 1.327 1.012 1.020 0.278
P16B -0.031 -0.037 0.119 0.125 1.444 0.873 0.935 0.277
P17B -0.029 -0.039 0.139 0.139 1.782 1.138 1.142 0.283
P18B -0.029 -0.043 0.165 0.162 2.068 1.163 1.164 0.281
P19B -0.035 -0.046 0.192 0.193 2.420 1.233 1.241 0.286
P20B -0.034 -0.045 0.312 0.318 3.891 1.463 1.521 0.296
Market
SVRP -0.014 -0.014 0.069 0.069 1.000 0.929 1.000 -

The volatility risk premiumgVRB for each portfolio is defined as the differenetvieen the realized volatility and the model-fris&-r
neutral integrated return volatility over the cepending month. The risk-neutral volatility is obted by the set of prices of options on
each underlying individual security with one motdhmaturity. The numbers reported are the annuhodatility risk premia for both
the 20 portfolios and the S&P 100 Index. Portfdliccontains the securities with the lowaMRPbetas and portfolio 20 includes
securities with the highestvRPbetas. The portfolios are updated each month guhie sample period. Tr®/RPbeta is the OLS
regression coefficient from linear regressionshaf monthlysVRPof each portfolio on theVRPof the S&P 100 market index. The
market return betas are the OLS regression coefiicifrom linear regressions of the monthly retoffreach portfolio on the market
return index given by either the S&P 100 Indexte bverall US value-weight market return of all GR8Bms listed on the NYSE,
AMEX, or NASDAQ. The monthly data refers to the ehation of each portfolio on the last day of eandnth. The betas are always
estimated at the monthly frequency. The relativiedsk spread is the average bid-ask spread fdoraalked options on the underlying
stock that belong to a given portfolio calculatéthe end of the last day of each month.
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Correlation Coefficients between the Volatility RiBremia for Representatig®’RPBeta-Sorted

Portfolios, January 1996 to February 2011

Panel A:
P5B P10B P15B P20B Market
Monthly SVRP
Correlation
P1B 0.414 -0.152 -0.381 -0.452 -0.366
PSB 1 0.607 0.314 0.194 0.323
P10B 1 0.834 0.726 0.736
P15B 1 0.927 0.863
P20B 1 0.863
Panel B: Mark
Dail P5B P10B P15B P20B arket
v SVRP
Correlation
PiB 0.427 -0.183 -0.441 -0.538 -0.435
PSB 1 0.589 0.333 0.155 0.231
P10B 1 0.865 0.685 0.733
P15B 1 0.911 0.828
P20B 1 0.841

This table reports the correlation coefficientdneated for the overall sample period using montllgily) data for the volatility risk
premia of the representative portfolios. The vitgtrisk premium 6§VRB for each portfolio is defined as the differenegvieen the
realized volatility and the model-free risk-neutirgtegrated return volatility over the corresporgdmonth. The risk-neutral volatility is
obtained by the set of prices of options on eadtertiying individual security with one month to maty. Portfolio 1 contains the
securities with the lowestVRPbetas, and portfolio 20 includes securities with highessVRPbetas. The portfolios are updated each

month during the sample period.
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Table 3
Correlation Coefficients between State Variablasuary 1996 to February 2011

Monthly Excess Cons Stockholder DEF SMB HML MOM
Correlations US Market Growth Cons
Return Growth
Market 0.273 -0.189 -0.118 0.075 0.019 0.130 0.185
sVRP
Excess
Market 1 0.213 0.769 -0.132 0.242 -0.247 -0.296
Return
Cons 1 0.131 -0.356 0.043 -0.125 -0.356
Growth
Stockholder
Cons 1 -0.149 0.449 0.237 -0.301
Growth
DEF 1 0.058 -0.087 -0.198
SMB 1 -0.372 0.091
HML 1 -0.156

This table reports the correlation coefficientsineated for the overall sample period using monttifta. The market volatility risk
premium is defined as the difference between tladizedl volatility and the model-free risk-neutratdgrated return volatility over the
corresponding month. The risk-neutral volatilityabtained by the set of prices of options on theP$80 index with one month to
maturity. In this table, Cons Growth indicates thenthly growth rate of seasonally adjusted realgagita consumption expenditures on
non-durables goods and services; Stockholder CamsvtG is the Malloy, Moskowitz, and Vissing-Jorgens(2011) measure of
consumption growth from stockholders; Excess MaReturn, SMB, HML, and MOM are the Fama-Frenchdestand the momentum
factor obtained from the Kenneth French’s websitel DEF is the default premium calculated as tfferdnce between Moody’s yield on

Baa corporate Bbonds and the 10-year governmeiut yietd.
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Table 4
Panel A: Consumption and Market Factor Betas foe FHortfolios Sorted by the Volatility Risk Premium
Beta, January 1996 to February 2011

svggtBe%ta- Market Market |\E/|)€(:1(I:’EZ'[S Cons Market |\E/|)€(:1(I:’EZ'[S Stock Cons

= . sVRP sVRP Growth sVRP Growth
ortfolios Return Return

P1B Beta -0.946 -0.764 0.257 0.440 -0.757 0.307 -0.255
(t-stat) (-5.28) (-4.18) (3.43) (0.31) (-4.14) (2.65) (-0.51)
[R%-adj] [0.129] [0.178] [0.178]

P5B Beta 0.307 0.402 0.116 0.748 0.386 0.113 0.054
(t-stat) (4.58) (6.04) (4.25) (1.43) (5.76) (2.66) (0.30)
[R%ad]] [0.100] [0.193] [0.184]

P10B Beta 0.819 0.873 0.026 1.561 0.844 0.033 0.037
(t-stat) (14.61) (15.37) (1.11) (3.49) (14.35) (0.89) (0.23)
[R%-adj] [0.540] [0.571] [0.542]

P15B Beta 1.327 1.327 -0.050 1.429 1.294 -0.063 0.138
(t-stat) (22.94) (22.45) (-2.08) (3.07) (21.35) (-1.63) (0.84)
[R%ad]] [0.744] [0.757] [0.745]

P20B Beta 3.891 3.769 -0.227 1.292 3.706 -0.347 0.732
(t-stat) (22.87) (21.58) (-3.17) (0.94) (21.28) (-3.15) (1.55)
[R2-adj] [0.743] [0.754] [0.756]

Panel B: Default Premium, Consumption, and Markettér Betas for Five Portfolios Sorted by the
Volatility Risk Premium Beta, January 1996 to Feiyg2011

sVRPBeta- Excess

Market Market Market Cons
Sorted SVRP SVRP Market DEF SVRP Growth DEF

Portfolios Return

P1B Beta -0.946 -0.777 0.267 0.296 -0.917 1.648 0.290
(t-stat) (-5.28) (-4.30) (3.60) (0.75) (-5.02) (1.06) (0.67)
[R%-adj] [0.129] [0.180] [0.126]

P5B Beta 0.307 0.393 0.117 -0.242 0.334 0.834 -0.234
(t-stat) (4.58) (5.98) (4.34) (-1.69) (4.97) (1.45) (-1.47)
[R%*ad]] [0.100] [0.196] [0.122]

P10B Beta 0.819 0.856 0.028 -0.531 0.860 1.088 -0.443
(t-stat) (14.61) (15.48) (1.25) (-4.40) (16.06) (2.38) (-3.50)
[R%-adj] [0.540] [0.587] [0.596]

P15B Beta 1.327 1.309 -0.046 -0.402 1.358 0.903 -0.286
(t-stat) (22.94) (22.37) (-1.94) (-3.15) (23.69) (1.85) (-2.11)
[R%ad]] [0.744] [0.758] [0.757]

P20B Beta 3.891 3.747 -0.217 -0.053 3.903 0.739 0.152
(t-stat) (22.87) (21.60) (-3.04) (-0.14) (22.42) (0.50) (0.37)
[R%-adj] [0.743] [0.753] [0.740]

This table reports the OLS risk premium volatilligtas. The volatility risk premiunsVVRP for each portfolio is defined as the
difference between the realized volatility and thedel-free risk-neutral integrated return volatildver the corresponding month.
The risk-neutral volatility is obtained by the s#tprices of options on each underlying individsalcurity with one month to
maturity. Portfolio 1 contains the securities witte lowestsVRPbetas and portfolio 20 includes securities witd tighestsVRP
betas. The portfolios are updated each month duhegample period. Tre/RPbeta is the OLS regression coefficient from linear
regressions of the monthBVRP of each portfolio on theVRPof the S&P 100 market index, consumption growtogclsholder
consumption growth, the US stock market return, ted default premium. The monthly data refers te d@bservation of each
portfolio on the last day of each month. The batasalways estimated at the monthly frequency.
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Table 5
GMM Estimation for Alternative Volatility Risk Preiorm Models Using
Portfolios Sorted by the Volatility Risk PremiumtBs, January 1996 to February 2011

| Panel A % o K a b c HJ Distance

Power NDC -34.873  -0.0023 - - - - 0.7078
(106.43)  (0.0012) (0.0000)

SHC  7.810  -0.0027 - - - - 0.7060

(12.61)  (0.0010) (0.0000)

Recursive NDC  -372.454  -0.0007  75.601 - - - 0.6956
(166.28)  (0.0017)  (65.14) (0.0009)

SHC  -7.394  -0.0027  3.483 - - - 0.7018

(20.91)  (0.0010)  (4.26) (0.0000)

Habit NDC 2461  -0.0030 - - - - 0.7812
(7.40)  (0.0012) (0.0007)

SHC 2224  -0.0029 - - - - 0.7644
(4.86)  (0.0013) (0.0101)

Recursive NDC  -308.509  -0.0003  -41.286 - - - 0.7012
SVRP' (166.89)  (0.0015)  (69.85) (0.0074)
HC 10.140 -0.0028 -40.819 - - - 0.7056
(15.47)  (0.0011) (872.33) (0.0000)

Panel B y o K a b c HJ-D
LinearM on - -0.0024 - -0.0267  -0.0101  -0.0001 0.6875
R +R2 (0.0014) (0.432)  (0.148)  (0.001) (0.0000)
LinearM on - -0.0025 - 01406  -0.0058 - 0.6994
SVRP' (0.0010) (0.719)  (0.576) (0.0000)
LinearM on - -0.0032 - 13874 04511  -0.4634 0.5871
SVRP+DEF (0.0008) (0.495)  (0.117)  (0.215) (0.0000)

This table reports the parameters obtained undeiGIMM estimation of alternative asset pricing medeith different preference
specifications using the second order moments rasrithe weighting GMM matrix for all cases. Thembers in parentheses below
the estimated parameters are standard errors thigilaumbers in parentheses below the HJ distamge\alues. In this table, NDC
refers to non-durable consumption and SHC indicstieskholder aggregate consumption. All modelseatenated with monthly data.
Habit is the Campbell-Cochrane model, where theneséd gamma is estimated simultaneously with stemation of the surplus
consumption process. The recursive specificatiateus/RP"includes consumption growth and the market volatilitk premium as
the second factor rather than the stock marketmrefthe linear SDF specifications include a modhelt tallows for skewness as a
determinant factor for volatility risk premia, thearket volatility risk premium as the individuattar, and the model adding default as
the second factor.
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Table 6
Model Comparison Using the HJ Distance for Portfelsorted by the Volatility Risk Premium Betas:
Tests of the Equality of the Squared HJ Distance

Recur Recur Linear Linear Linear
Models PSOS’Cer ﬁ%%" Fé‘i%r EaDtE':t ';aHbC't SVRP" sVRPF"  Mon  Mon s'\\//IF(eTm
NDC SHC Ry#R.Z sVRP +DEF

Power 0.0026 0.0172 0.0085 -0.1093 -0.0832  0.0093 0.0032 0.0284 0.0118 0.1563

NDC (0.718)  (0.948) (0.438) (0.181) (0.425) (0.962) (0.663) (0.073)  (0.540)  (0.000)
Power 0.0146  0.0059 -0.1119 -0.0858 0.0068 0.0006 0.0259  0.0093  0.1538
SHC (0.956) (0.477) (0.162) (0.390) (0.973) (0.713) (0.142) (0.658)  (0.000)
Recur -0.0087 -0.1265 -0.1004 -0.0078 -0.0140 0.0113 -0.0053  0.1392
NDC (0.974) (0.650) (0.722) (0.932) (0.958) (0.966)  (0.984)  (0.605)
Recur -0.1178 -0.0917 0.0008  -0.0053 0.0200  0.0034  0.1478
SHC (0.138)  (0.369) (0.997) (0.572) (0.323) (0.887)  (0.000)
Habit 0.0261 0.1186 01125 0.1377 01211  0.2656
NDC (0.838) (0.585) (0.162) (0.111) (0.169)  (0.004)
Habit 0.0925 0.0864 01117 00951  0.2395
SHC (0.682)  (0.385) (0.307) (0.389)  (0.032)
Recur

-0.0061 0.0191 0.0025 0.1470

SVRP"
0.975) (0.925) (0.990)  (0.472
NDC ( ) ( ) ( ) ( )

Recur
e 00252 00086  0.1531
e (0.147)  (0.676)  (0.000)
ngir M -0.0166  0.1279
R R (0.000)  (0.000)

m
ngﬁr M 0.1445
R (0.000)

The reported numbers are the results of pairwists &f equality of the squared HJ distance foradtive specifications of SDF linear and

non-linear models. We report the difference betwiensample squared HJ-distances of the modesim and columrj, cAXZ —312 , and the

associate-value in parentheses for the test of the null typsis: 5i2 =5j2 . The p-values are computed under the assumption that the
models are potentially misspecified.
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Table 7
Two-Pass Cross-Sectional FarhdacBeth Estimation for Alternative Volatility Rigkremium Models,
Using Portfolios Sorted by the Volatility Risk Preemm Betas, January 1996 to February 2011

Panel A: Two-Pass Cross-Sectional Regressions@dgtisumption-Based Factors

SDF Ao e Ashe A Mmoo st et o MAE R
Power NDC (gzggi) (—g.ggg) (%%%587)
[0.717] [0.972) ~ - - - - - - 00049 15.999)

SHC (8:285) (8'833) (%0715592)

[0370] - o118 - - - - - - 0.0036 1534

Recursive NDC  -0.003 o3 0.064 o800
e .

sHe (_g.ggz?) (8'823) (8'833) (%%52471)

[0.763] - o507 - [0161] - - - 00033 5163

bt Nc g oo aoe o
[0112] [oes1) -  [0.692] - - - - 0.0035 15421

o g ome o 82,

[0.572] - [0.287] [0.096] - - - - 00028 15204]

Recursive ~ NDC  0.002 g qgop -0.007 0.1290
R N N BN
e um e e

[0.213] - o931 - - © 0153 - 0% joarg)

Panel B: Two-Pass Cross-Sectional RegressionsStétie Variables-Based Factors

SDF /10 /lndc ishc /lra /1m /ﬁ{m2 /lsvrpm /ldef /1hml MAE R2
0.009 -0.007 0.012  0.021 0.5233
SVRP+DEF (0.000) (0.000) (0.000) (0.003) 0. (0.009)
+HML [0.002] ~ - : : - [0.014] [0.000] [0.255] [0.242]
0.009 -0.010 -0.007 0.014  0.019 0.5341
SVRP4DEF (0.000) (0.154) (0.000) (0.000) (0.006) o o (0.017)
+HML+R [0.002] ~ - © 0658 [0.049] [0.000] [0.335] [0.219]
0.002 0.031 0.0751
CAPM (0.284) i i (0.001) i i i i 00035 (0-292)
[0.285] [0.167] : [0.176]
0.001 0.036  0.001 0.1031
R+R,2 (0.550) (0.000) (0.041) 00022 (0193)
[0.648] . . ) [0.014] [0.295] ) ) ) ' [0.148]
0.005 -0.006 0.0879
sVRP' (0.000) i ) ) i (0.000) ) ) 00035 (0148)
[0.001] [0.109] : [0.173]
0.007 -0.006  0.012 0.5139
sVRP+DEF (0.000) ) ) ) i (0.000)  (0.000) ) 00019 (0:001)
[0.006] [0.049] [0.000] : [0.211]

We report the parameter estimated from the two-passs sectional regression with rolling betasafternative asset pricing model8AE is the mean
pricing errors associated with the 20 portfoliosked by their volatility risk premia. The? value is the sample cross-sectioRalas calculated by
KRS. The numbers in parentheses are the traditibaaia—MacBeth standard errors of the alternative paramegémates and the numbers in

brackets ar@-values associated with the KRS standard erroxssgetj by errors- in- the variables and potentialspecification of the models. Below
the cross-sectiond&® values, we report thevalue for the test dfl,: R? = 0 and in brackets we display the standard erré®afnder the assumption
that 0 <RE < 1.
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Table 8

Model Comparison Using the Two-Pass Cross-Sectisaala-MacBeth Estimation for Portfolios Sorted
by the Volatility Risk Premium Betas: Tests of fhguality of the Cross-Sectiongf Values

Recur Recur SVRP' SVRF
Power Recur Recur Habit  Habit +DEF ) sVRP'
Models "¢/~ NDC SHC NDC SHC sVRP' sVRP' +DEF +HML CAPM R#R.Z SVRP +DEF
NDC SHC +HML +R
m

Power -0.0096 -0.0579 -0.0484 -0.0060 -0.0256 -0.1234 -0.0816 -0.5176 -0.5284 -0.0694 -0.0975 -0.0822 -0.5083
NDC  (0.978) (0.902) (0.841) (0.986) (0.920) (0.762) (0.745) (0.124) (0.100) (0.759) (0.708) (0.712) (0.112)

Power -0.0483 -0.0389 0.0036 -0.0160 -0.1138 -0.0720 -0.5080 -0.5188 -0.0599 -0.0879 -0.0726 -0.4987
SHC (0.894) (0.891) (0.994) (0.945) (0.788) (0.837) (0.243) (0.220) (0.810) (0.795) (0.828)  (0.220)
Recur 0.0094 00519 0.0323 -0.0655 -0.0237 -0.4597 -0.4705 -0.0116 -0.0396 -0.0243 -0.4504
NDC (0.974) (0.931) (0.930) (0.810) (0.945) (0.306) (0.278) (0.969) (0.903) (0.945)  (0.286)
Recur 0.0424 0.0228 -0.0749 -0.0332 -0.4692 -0.4800 -0.0210 -0.0490 -0.0338 -0.4598
SHC (0.923) (0.897) (0.788) (0.841) (0.119) (0.089) (0.767) (0.704) (0.840)  (0.082)
Habit -0.0196 -0.1174 -0.0756 -0.5116 -0.5224 -0.0634 -0.0914 -0.0762 -0.5022
NDC (0.964) (0.836) (0.866) (0.325) (0.306) (0.882) (0.837) (0.857) (0.327)
Habit -0.0978 -0.0560 -0.4920 -0.5028 -0.438 -0.0718 -0.0566 -0.4827
SHC (0.784) (0.794  (0.153) (0.126) (0.815) (0.748) (0.809) (0.117)
Sfég 0.0418 -0.3942 -0.4050 0.0539 0.0259 0.0412 -0.3849
DG (0.863) (0.233) (0.200) (0.851) (0.923) (0.865) (0.212)
SR\ng;f -0.4360 -0.4468 0.0122 -0.0158 -0.0006 -0.4266
SHC (0.064) (0.036) (0.949) (0.923) (0.995)  (0.039)

sVRP'
+DEF -0.0108 0.4482 0.4202 0.4354  0.0093
(0.744)  (0.150) (0.110) (0.070)  (0.941)

+HML

SVRFP
+DEF 0.4590 0.4310 0.4462  0.0202
0.117 (0.076) (0.043) (0.860
+HML ( ( ) ( ) ( )

+Rm

-0.0280 -0.0128 -0.4388
CAPM (0.845)  (0.938) (0.111)
2 0.0152 -0.4108
RertRm (0.926)  (0.070)
SVRP' -0.4108

(0.044)

This table presents the results of pairwise tektxjaality of the OLS two-pass cross-sectioRavalues for alternative asset pricing models. Werethe difference
between the sample cross-sectidRavalues of the models in rowand columrj, IA?I-Z - IA?JZ and the associatgdvalues in parentheses for the testrbf) : IA?iz = IA?JZ .

Thep-values are computed under the assumption thahtitels are potentially misspecified.
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Table 9
Portfolio Return and Volatility Risk Premium Sensties to the Default Premium
and Financial Stress, January 1996 to February 2011

Portfolio Return Portfolio Return
sVRPBeta-Sorted Default Betas with Financial Stress Betas Portfolio sVRP
Portfolios Market in the with Market in the Financial Stress Betas
Regression Regression
P1B 1.571 0.011 -0.0018
(2.00) (1.61) (-0.49)
P2B 1.208 0.012 -0.0021
(2.82) (3.25) (-1.17)
P3B 0.973 0.011 -0.0024
(2.15) (2.92) (-1.50)
P4B 0.521 0.006 -0.0012
(1.43) (1.93) (-0.85)
P5B 1.144 0.008 -0.0002
(3.34) (2.66) (-0.15)
P6B 0.273 0.003 -0.0005
(0.80) (2.02) (-0.40)
P7B 0.587 0.005 -0.0011
(1.85) (1.72) (-0.82)
P8B 0.612 0.004 -0.0013
(1.90) (1.58) (-0.99)
P9B 0.801 0.006 0.0013
(2.51) (2.29) (0.94)
P10B 0.077 0.004 0.0008
(0.26) (1.45) (0.50)
P11B 0.320 0.002 0.0003
(0.98) (0.78) (0.22)
P12B -0.174 -0.001 0.0013
(-0.52) (-0.24) (0.76)
P13B -0.495 -0.003 0.0004
(-1.57) (-0.92) (0.22)
P14B -0.164 -0.002 0.0037
(-0.52) (-0.59) (1.87)
P15B -0.046 -0.001 0.0039
(-0.16) (-0.50) (1.84)
P16B -0.192 -0.001 0.0046
(-0.57) (-0.30) (1.96)
P17B -0.536 -0.004 0.0060
(-1.60) (-1.31) (2.20)
P18B -0.160 -0.001 0.0056
(-0.45) (-0.16) (2.73)
P19B -0.720 -0.006 0.0098
(-2.06) (-2.12) (2.61)
P20B -0.999 -0.007 0.0172
(-2.02) (-1.97) (2.91)

This table employs the returns of the underlyingyponents of the 28VRPbeta-sorted portfolios to estimate the default and
financial stress betas controlling for market neturThe first column reports the return betas wépect to the default premium
and the second column reports the betas with respéice St. Louis Fed Financial Stress Index (S3I.FThe STLFSI measures
the degree of financial stress in the markets whegeeasing values of the index represents higiman€ial stress risk. The last
column displays theVRPbetas of the 26VRPbeta-sorted portfolios with respect to STLFSI.
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Table 10
Beta against Beta Portfolio from the Volatility RiBremia
Long Low Beta and Short High Beta Portfolio Retufmesn the Underlying Components of the 20 Risk
Premia Volatility Beta-Sorted Portfolios, JanuaBp to February 2011

Fama- Fama- Excess Excess
BAB CAPM Fama- Erench French Market Market
(sVRP French + MOM + MOM Return Return
+ LIQ + TED + Default
Alpha 0.004648 0.004363 0.004626 0.004643 0.002182 -0.003654
(2.454) (2.285) (2.403) (2.403) (0.868) (-1.018)
Adj R 0.270 0.275 0.275 0.271 0.274 0.281

We show the results from the estimation of the @h%-series regressions for a BAB portfolio consted from our sample data
,which is a portfolio of long levered low-beta dtecand short de-levered high-beta securities. &gert the estimated alphas for
alternative factor asset pricing models. In thidgaTED is a measure of funding liquidity proxied the spread between Treasury

bill rate and the euro-dollar LIBOR rate. FarReench is the three-factor model, MOM is the momenfactor, and DEF is the
default premium.
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Figure 1

Volatility Risk Premiafor Extreme and Inter mediate SVRP Beta-Sorted
Portfolios andthe Market: January 1996-February 2011

2,5

P1B P10B P20B SVRPMKET

This figure displays the temporal behavior of tlepresentative volatility risk premium beta-sortegttfplios and the market
volatility risk premium.
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Figure 2

Risk Aversion Changes and Market Valatiliy Risk Premium

——SVRPM —— Two-month Lagged Changes in RiskAversibn

This figure displays the market volatility risk preim and time-varying risk aversion estimated urttierhabit preference model
with a curvature parameter estimated simultaneaustythe pricing model and the surplus consumpéquoation.

55



Figure 3

Pass Cross-Sectional Regression, Volatility Risknitum Beta-Sorted Portfolios

Average Returns versus Average Returns from thenBstd Parameters of the FarvacBeth Two-

The Cross-Section of Vol atility Risk Premiawith Aggregate

Consumption Gr owth:

1996-2011
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Panel B: Habit preferences with

time-varying riskersion.
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The Cross-Section of Volatility Risk Premiawith Recursive
Preferences and M arket Volatility Risk Premium: 1996-

2011
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Panel C: Recursive preferences with aggregate ogptton growth and market wealth.
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Panel D: Linear SDF with market volatility risk preum and the default premium.

57



