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1. Introduction 

Since the seminal paper of Bakshi and Kapadia (2003a), the market variance risk 

premium has been reported to be negative, on average, during alternative sample 

periods.1 Since the payoff of a variance swap contract is the difference between the 

realized variance and the variance swap rate, negative returns to long positions on 

variance swap contracts for all time horizons mean that investors are willing to accept 

negative returns for purchasing realized variance.2 Equivalently, investors who are 

sellers of variance and are providing insurance to the market, require substantial 

positive returns. This may be rational, since the correlation between volatility shocks 

and market returns is known to be strongly negative and investors want protection 

against stock market crashes. Along these lines, Bakshi and Madan (2006), and Chabi-

Yo (2012) theoretically show that the skewness and kurtosis of the underlying market 

index are key determinants of the market variance risk premium. Indeed, Bakshi and 

Madan (2006), Bollerslev, Gibson, and Zhou (2011), Bekaert and Hoerova (2013), and 

Bekaert, Hoerova and Lo Duca (2013) argue that the market variance risk premium is 

an indicator of aggregate risk aversion.3 A related interpretation is due to Bollerslev, 

Tauchen, and Zhou (2009) and Drechsler and Yaron (2011), who interpret the market 

variance risk premium as a proxy of macroeconomic risk (consumption uncertainty). 

They show that time-varying economic uncertainty and a preference for the early 

resolution of uncertainty are required to generate a negative market variance risk 

premium. Zhou (2010) shows that the market variance risk premium significantly 

predicts short-run equity returns, bond returns, and credit spreads. Consequently, the 

                                                 
1 For empirical evidence of the negative variance risk premium on the market index, see Carr and Wu 
(2009) and the papers cited in their work. 
2 A variance swap is an over-the-counter derivative contract in which two parties agree to buy or sell the 
realized variance of an index or single stock on a future date.  
3 More specifically, Bekaert, Hoerova, and Lo Duca (2013) show the interactions between monetary 
policy and the market variance risk premium, suggesting that monetary policy may impact aggregate risk 
aversion. 
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author argues that risk premia in major markets comove in the short- run and that such 

comovement seems to be related to the market variance risk premia. Campbell, Giglio, 

Polk, and Turley (2014), using an intertemporal capital asset pricing model (CAPM) 

framework, argue that covariation with aggregate volatility news has a negative 

premium. Finally, Nieto, Novales, and Rubio (2014) show that the uncertainty that 

determines the variance risk premium –the investors’ fear of deviating from normality 

in returns– is also strongly related to a variety of macroeconomic and financial risks 

associated with default, employment growth, consumption growth, and stock market 

and market illiquidity risks. At this point, it is fair to argue that we understand the 

behavior of the market variance risk premium and its implications for financial 

economics.  

However, it is surprising how little we know about the variance risk premium at 

the individual level. Bakshi and Kapadia (2003b) show that the variance risk premium 

is also negative in individual equity options. However, Driessen, Maenhout, and Vilkov 

(2009) show that the variance risk premium for stock indices is systematically larger, 

that is, more negative, than for individual securities. They argue that the variance risk 

premium can, in fact, be interpreted as the price of time-varying correlation risk. They 

show that the market variance risk is negative only to the extent that the price of the 

correlation risk is negative. In a related paper, Buraschi, Trojani, and Vedolin (2014) 

argue that the wedge between index and volatility risk premia is explained by investor 

disagreement. Hence, the greater the differences in beliefs among investors, the larger 

the market volatility risk relative to the volatility risk premium of individual options. 

Even these papers are particularly concerned with the behavior of the market variance 

risk premium, despite employing data at the individual level.  
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We argue that an analysis and the understanding of the time-series and cross-

sectional behavior of the variance risk premium at the individual level is lacking in the 

previous literature. This paper partially covers this gap. More specifically, we analyze 

the cross-sectional variation of the volatility risk premium (sVRP) at the portfolio level. 

We employ daily data from OptionMetrics for the Standard & Poor’s (S&P) 100 Index 

options and for individual options on 181 stocks included at some point in the S&P 100 

Index during the sample period from January 1996 to February 2011. We employ 

options with one month to expiration. We calculate sVRP for each stock at the 30-day 

horizon as the difference between the corresponding realized volatility and the model-

free implied volatility described by Jiang and Tian (2005). Similarly, we estimate the 

market volatility risk premium using the S&P 100 Index as the underlying index. For 

each month, using an individual sVRP with at least 15 daily observations, we construct 

20 equally weighted portfolios ranking the individual sVRP values according to their 

betas with respect to the market sVRP. These volatility risk premium betas are estimated 

over the previous month with daily data. Although we briefly describe the time-varying 

behavior of volatility risk premia for our 20 sVRP beta-sorted portfolios and their betas 

with respect to alternative aggregate sources of risk, the main objective of the paper is to 

analyze the determinants of the cross-sectional variation of average volatility risk 

premia across our sample of 20 portfolios.  

We find that the betas of the sVRP beta-sorted portfolios estimated with respect to 

the market sVRP, obtained from the S&P 100 Index options, range from -0.95 to 3.89, 

where the portfolio with the most negative beta has the highest average sVRP and the 

portfolio with the most positive beta presents the most negative average sVRP. 

Therefore, we find both negative and positive average sVRP values ranging from 0.103 



 5 

to -0.034 on an annual basis, while the average market sVRP is negative, as in previous 

literature. 

Regarding the cross-sectional variation of the volatility risk premia, we find that, 

independently of the preferences imposed, consumption risk does not seem to explain 

the cross-sectional behavior of sVRP. Factor asset pricing models seem to be more 

useful in explaining sVRP at the cross section. The key factors explaining average sVRP 

across our 20 portfolios are the market volatility risk premium and, especially, the 

default premium. The risk premia associated with the default premium betas are positive 

and statistically significant even if we explicitly recognize the potential misspecification 

of the models. Moreover, we cannot reject the overall specification of the two-factor 

model and the cross-sectional 2R  is equal to 0.514, with an asymptotic standard error 

of 0.211. Finally, our findings are related to credit risk and financial market stress 

conditions. More precisely, the cross-sectional variations of risk premia reflects the 

different uses of volatility swaps to hedge default and the financial stress risks of the 

underlying components of our sample portfolios. 

This paper is organized as follows. Section 2 briefly describes variance swaps and 

volatility swap contracts and presents the alternative asset pricing models that we 

employ in the study of the cross-sectional variation of average sVRP. Section 3 contains 

a description of the data. Section 4 discusses the model-free implied volatility and the 

estimation of sVRP at the portfolio level. Section 5 presents the basic characteristics of 

the 20 sVRP beta-sorted portfolios and some empirical results using unconditional sVRP 

beta estimates. Section 6 reports the main empirical findings of the paper and discusses 

the econometric strategy. Section 7 relates our evidence to financial stress conditions. 

Section 8 concludes the paper. 
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2. Theoretical Framework 

In a variance swap, the buyer of this forward contract receives at expiration a payoff 

equals to the difference between the annualized variance of stock returns and the fixed 

swap rate. The swap rate is chosen such that the contract has zero present value, which 

implies that the variance swap rate represents the risk–neutral expected value of the 

realized return variance: 

                                                   ( ) a
t,t

a
t,t

Q
t SWRVE ττ ++ =                                                (1) 

where ( )⋅Q
tE  is the time t conditional expectation operator under some risk–neutral 

measure Q, a
t,tRV τ+  is the realized variance of asset (or portfolio) a between t and t + τ, 

and a
t,tSW τ+  is the delivery price for the variance or the variance swap rate on the 

underlying asset a. The variance risk premium of asset a is defined as 

                                      ( ) ( )a
t,t

Q
t

a
t,t

P
t

a
t,t RVERVEVRP τττ +++ −=                                   (2) 

On the other hand, at expiration, a volatility swap pays the holder the difference 

between the annualized volatility and the volatility swap rate, 

                                     ( )a
t,t

a
t,tvol sSWsRV N ττ ++ −                                               (3) 

where a
t,tsRV τ+ is the realized volatility of asset a between t and t + τ, a

t,tsSW τ+  is the 

fixed volatility swap rate, and volN  denotes the volatility notional. This paper analyzes 

the determinants of the cross-sectional variation of volatility risk premia. We therefore 

define the volatility risk premium of asset a as follows, 

                           ( ) ( )a
t,t

Q
t

a
t,t

P
t

a
t,t sRVEsRVEsVRP τττ +++ −=                                (4)   

Using the fundamental asset pricing equation, we know that the risk premium of any 

asset a with rate of return a
tR is given by 
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where τ+t,tM  is the stochastic discount factor (SDF). Therefore, given the definition of 

the volatility risk premium, the following expression holds: 

                           ( ) ( ) ( )
( )τ

ττ
ττ

+

++
++ +=

t,t
P
t

a
t,tt,t

P
ta

t
P
t

a
t

Q
t

ME

sRV,MCov
sRVEsRVE                      (6) 

Thus, using the payoff of a volatility swap, the fundamental pricing framework implies 

that 

                     ( )[ ] ( )[ ] 0 sVRP M EsSWsRVME a
t,tt,t

P
t

a
t,t

a
t,tt,t

P
t ==− +++++ τττττ          (7)                 

In this paper, the SDF, τ+t,tM , is allowed to be based on either power, recursive, and 

habit preferences or on alternative linear SDF specifications based on state variables 

potentially capable of explaining the cross-sectional variation of volatility swaps. In 

particular, we test the following models:  

a) Model 1, C1, power utility with aggregate consumption:   

                                        
( )

( )
γ

ττ
τ ρρ

−
++

+ 







=

′
′

=
t

t

t

t
t,t C

C

CU

CU
M                                   (8a) 

where tC  is the aggregate consumption of non-durable goods and services, 0>γ  

represents the degree of risk aversion, and ρ  is the subjective discount factor. 

b) Model 1, C2, power utility with stockholder consumption, denoted SHC
tC : 

                                                   

γ
τ

τ ρ
−

+
+ 













=

SHC
t

SHC
t

t,t
C

C
M                                              (8b)                                   

c) Model 2, C1, recursive utility with aggregate consumption: 
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where the non-observable continuation value is approximated, as for Epstein and Zin 

(1991), by the return on the market portfolio or market wealth so that the corresponding 

SDF becomes 
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where 
κ
γη

−
−=

1

1
 and κ  is the inverse of the elasticity of intertemporal substitution. 

d) Model 2, C2, recursive utility with stockholder consumption: 
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e) Model 3, C1, external habit preferences, as for Campbell and Cochrane (1999): 

                                                  
( )

γ

γ

−
−−

=
−

1

1XC
U

1
tt

t                                               (11) 

where tX  is the level of habit and the SDF is given by 

                                              
γ
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−
++

+ 




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where γ  is a parameter of utility curvature, tttt CXCS −=  is the surplus 

consumption ratio, and the counter-cyclical time-varying risk aversion is given by 

tSγ . The aggregate consumption follows a random walk and the surplus consumption 

process is 

                                  ( ) ( )( )gccsss1s t1ttt1t −−++−= ++ λφφ                                (13) 
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where g is the mean rate of consumption growth, φ  is the persistence of the habit shock, 

and the response or sensitivity coefficient ( )tsλ  is given by 

                                    ( ) ( ) ( ) 1ss2111s tct −−−−= φγσλ                                 (14) 

where cσ  is the volatility of the consumption growth rate and lower capital letters 

denote variables in logarithms. 

f) Model 3, C2, external habit with stockholder consumption: 

                                             

γ
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g) Model 4, C1, recursive preferences with the market volatility risk premium as the 

continuation value: 
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where m
tsVRP τ+  is the market volatility risk premium. 

h) Model 4, C2, recursive preferences with the market volatility risk premium, and 

stockholder consumption: 
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i) Model 5: linear SDF for both the market return and the squared of aggregate wealth: 

                                          2
mtmtt,t cRbRaM τττ +++ ++=                                           (18) 

As previously discussed, recent empirical work has consistently shown that risk–neutral 

volatility is higher, on average, than physical return volatility. Little work has been done 

on theoretically characterizing the distance between both types of volatility, with Bakshi 

and Madan (2006) and Chabi-Yo (2012) being two exceptions. In both cases, the market 
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variance risk premium is derived as a function of the standard deviation, skewness, and 

kurtosis of equity returns. Therefore, the magnitude and behaviour over time of the 

market variance risk premium may also be empirically related to higher -order moments 

of the equity return distribution. This suggests that a potentially relevant model to 

explain the cross-sectional variation of volatility risk premia should explicitly recognize 

higher-order moments of the underlying market portfolio return. In particular, Bakshi 

and Madan (2006) show that, when the SDF is a linear function on both the market 

return and the squared of market return, as in expression (18), then the variance risk 

premium is a function of both the skewness and kurtosis of the market and  

0RM m <∂∂  and  0RM 2
m

2 >∂∂ . 

j) Model 6: CAPM with the market volatility risk premium: 

                                                   m
tt,t bsVRPaM ττ ++ +=                                              (19) 

This may be justified by noting that Bali and Zhou (2012) show that the cross- section 

of equity returns portfolios is explained by the market, and also by economic 

uncertainty proxied by the market variance risk premium. 

k) Model 7: multi-factor SDF with the market volatility risk premium and the default 

premium as the difference between the Moody’s yield on Baa corporate bonds and the 

10-year government bond yield, denoted τ+tDEF : 

                                          τττ +++ ++= t
m

tt,t cDEFbsVRPaM                                    (20) 

The economic rationale of this model comes from the findings of Zhou (2010) and 

Wang, Zhou, and Zhou (2013), who show that the firm-level variance risk premium has 

significant explanatory power for credit default swap spreads over and above the market 

variance risk premium and the VIX. The predictive ability increases as the credit quality 

of the credit default swap underlying companies deteriorates.  
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All these SDF specifications will be tested using a generalized method of 

moments (GMM) framework with the same weighting matrix across all test portfolios 

to compare the performance of the models by the Hansen–Jagannathan (1997, 

henceforth HJ) distance. Additionally, we employ the two-pass cross-sectional 

regression approach of Fama and MacBeth (1973). In this case, we use the linear 

versions of all previous discussed models and also include the simple CAPM with the 

market portfolio return and extended models using the market portfolio return, the 

market volatility risk premium, the Fama–French HML factor, and the default premium 

as additional pricing factors. 

 

3. Data  

We employ daily data from OptionMetrics for the S&P 100 Index options and for 

individual options on all stocks included in the S&P 100 Index at some point during the 

sample period from January 1996 to February 2011. This yields a total of 181 stocks 

used in our estimations. From the OptionMetrics database, we obtain all put and call 

options on the individual stocks and on the index with time to maturity between six days 

and 90 days. Given that the options are American style, it is convenient to work with 

short-term maturity options, for which the early exercise premium tends to be 

negligible.4 We select the best bid and ask closing quotes to calculate the mid-quotes as 

the average of bid and ask prices, rather than actual transaction prices, to avoid the well 

known bid–ask bounce problem described by Bakshi, Cao, and Chen (1997). In 

selecting our final option sample, we apply the usual filters. We discard options with 

zero open interest, zero bid prices, missing delta or implied volatility, and negative 

implied volatility. We also ignore options with extreme moneyness, that is, puts with a 

                                                 
4 See the evidence reported by Driessen, Maenhout, and Vilkov (2009) who employ a similar database.  
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Black–Scholes delta above -0.05 and calls with a delta below 0.05. Finally, regarding 

the exercise level, we employ out-of-the-money options using puts with a delta above       

-0.5 and calls with a delta below 0.5. 

It seems reasonable to expect that aggregate macroeconomic variables and market-

wide portfolios extensively used by researchers when explaining the time series and 

cross-sectional behavior of excess equity returns should also be relevant factors in 

explaining variance risk premia across assets. This is the main criterion we follow when 

collecting our data. As our option data, the market return for the S&P 100 Index and 

individual stock returns and dividends are also obtained from OptionMetrics, while 

portfolio return data are from Kenneth French’s website. In particular, we collect 

monthly data on the value-weighted stock market portfolio return, the risk-free rate, the 

SMB and HML Fama–French risk factors, and the momentum factor denoted MOM.  

Additionally, yields for 10-year government bonds, 1-month T-bills, and Moody’s 

Baa corporate bonds are obtained from the Federal Reserve Statistical Release. The 

default premium, denoted DEF, is the difference between Moody’s yield on Baa 

corporate bonds and the 10-year government bond yield.  

We obtain nominal consumption expenditures on nondurable goods and services 

from Table 2.8.5 of the National Income and Product Accounts (NIPA), available at the 

Bureau of Economic Analysis. Population data are from NIPA’s Table 2.6 and the price 

deflator is computed using prices from NIPA’s Table 2.8.4, with the year 2000 as its 

basis. All this information is used to construct monthly rates of growth of seasonally 

adjusted real per capita consumption expenditures on nondurable goods and services 

from January 1959 to September 2012. We also use aggregate per capita stockholder 

consumption growth rates. Exploiting micro-level household consumption data, Malloy, 

Moskowitz, and Vissing-Jorgensen (2011) show that long-run stockholder consumption 
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risk explains the cross-sectional variation in average stock returns better than the 

aggregate consumption risk obtained from nondurable goods and services. In addition, 

they report plausible risk aversion estimates. They employ data from the Consumer 

Expenditure Survey (CEX) for the period March 1982 to November 2004 to extract 

consumption growth rates for stockholders, the wealthiest third of stockholders, and 

non-stockholders. To extend their available time period for these series, the authors 

construct factor-mimicking portfolios by projecting the stockholder consumption 

growth rate series from March 1982 to November 2004 onto a set of instruments and 

use the estimated coefficients to obtain a longer time series of instrumented stockholder 

consumption growth. In this paper, we employ the reported estimated coefficients of 

Malloy, Moskowitz, and Vissing-Jorgensen (2011) to obtain a factor-mimicking 

portfolio with the same set of instruments for stockholder consumption from January 

1960 to September 2012. 

 

4. Model-Free Implied Volatility and Estimation of the Volatility Risk Premia 

Britten-Jones and Neuberger (2002) first derived the model-free implied volatility under 

diffusion assumptions. They obtain the risk–neutral expected integrated variance over 

the life of the option contract when prices are continuous and volatility is stochastic. 

Jiang and Tian (2005) extend their paper to show that their method is also valid in a 

jump- diffusion framework and, therefore, their methodology is considered to be a 

model-free procedure.  

We calculate the model-free implied variance denoted a
t,tMFIV τ+  by the 

following integral over a continuum of strikes: 

   
( ) ( ) ( )( )

dK
K

0,Kt,tBSmaxt,tBKC
2MFIV

0
2

a
t

a
t,ta

t,t ∫
∞

+
+

−+−+
=

τττ
τ             (21)   



 14 

where ( )KCa
t,t τ+  is the spot price at time t of a τ-maturity call option on either an asset 

or index a with strike K, ( )τ+t,tB  is the time t price of a zero-coupon bond that pays 

$1 at time t + τ, and a
tS  is the spot price of asset a at time t minus the present value of 

all expected future dividends to be paid before the option maturity. Expression (21) can 

be accurately approximated by the following sum over a finite number of strikes: 

                    ( ) ( )[ ] K KgKgMFIV
m

1j
1j

a
t,tj

a
t,t

a
t,t ∆τττ ∑

=
−+++ +≅                          (22) 

where  

( )
KjKK   ,

m

KK
K minj

minmax ∆∆ +=
−

=  for m,,1,0j K=   

and 

( ) ( ) ( ) ( )( )
2
j

j
a
tj

a
t,t

j
a
t,t

K

0,Kt,tBSmaxt,tBKC
Kg

−+−+
= +

+
τττ

τ  

For each time -to- maturity from six days to 60 days, we calculate the model-free 

implied variance each day for each underlying asset that has at least three available 

options outstanding, using all the available options at time t.5 For the risk-free rate, we 

use the T-bill rate of appropriate maturity (interpolated when necessary) from 

OptionMetrics, namely, the zero-coupon curve. For the dividend rate for the index we 

employ the daily data on the index dividend yield from OptionMetrics. To infer the 

continuously compounded dividend rate for each individual asset, we combine the 

forward price with the spot rate used for the forward price calculations. We obtain the 

mean continuously compounded dividend rate by averaging the implied OptionMetrics 

                                                 
5 The window from six days to 60 days corresponds to the maximum range of time to maturity we allow 
in the necessary interpolation to have enough options every day in the sample with 30 days to maturity. 
See the discussion below. 
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dividends. Finally, we annualize the model-free implied variance using 252 trading days 

in a calendar day.  

The specific implementation follows the approach of Jiang and Tian (2005). It is 

well known that options are traded only over a limited number of strikes. In principle, 

expression (22) requires the prices of options with strikes jK  for m,,1,0j K= . 

However, the corresponding option prices are not observable because these options are 

not listed. We apply the curve-fitting method to Black–Scholes implied volatilities 

instead of option prices. The prices of listed calls (and puts with different strikes) are 

first transformed into implied volatilities using the Black–Scholes model and a smooth 

function is fitted to the implied volatilities using cubic splines.6 Then, we extract 

implied volatilities at strikes jK  from the fitted function. Finally, we employ equation 

(22) to calculate the model-free implied variance using the extracted option prices.  

It is sometimes the case that the range of available strikes is not sufficiently large. 

For option prices outside the range between the maximum and minimum available 

strikes, we also follow Jiang and Tian (2005) and use the endpoint implied volatility to 

extrapolate their option prices. This implies that the volatility function is assumed to be 

constant beyond the maximum and minimum strikes.7 Finally, discretization errors are 

unlikely to have any effect on the model-free implied variance if a sufficiently large m, 

beyond 20, is chosen. In our case, we employ an m that equals 100.  

At each time t, we focus on a 30-day horizon maturity, interpolated when 

necessary using the nearest maturities1 τ  and 2 τ  following the procedure of Carr and 

Wu (2009). The interpolation is linear in total variance: 

                                                 
6 As pointed out by Jiang and Tian (2005), the curve-fitting procedure does not assume that the Black–
Scholes model holds. It is a tool to provide a one-to-one mapping between prices and implied volatilities. 
7 Jiang and Tian (2005) discuss this approximation error and the (different) truncation error that arise 
when we ignore the tails of the distribution across strikes. In our case and to avoid the truncation error, we 
use 3.5 standard deviations from the spot underlying price as truncation points.  
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We use the square root of the model-free implied variance to approximate the model-

free annualized implied volatility as: 

                                       a
t,t

a
t,t MFIVsMFIV ττ ++ =                                          (24) 

For each day in the sample period, we also calculate the realized variance over the same 

period as that for which implied variance is obtained for that day, that is, for 30 days, 

requiring that no more than 14 returns be missing from the sample: 

                                      ∑
=

++ =
τ

τ τ 1s

2
st

a
t,t R

1
RV                                                     (25)  

where R denotes the rate of return adjusted by dividends and splits. As before, we 

annualized the realized variance and take the square root to obtain the realized 

volatility: 

                                                 a
t,t

a
t,t RVsRV ττ ++ =                                                  (26) 

Finally, for each asset and the index, we calculate the volatility risk premium, sVRP, at 

the 30-day horizon as the difference between the corresponding realized and model-free 

implied volatility: 

                              a
t,t

a
t,t

a
t,t sMFIVsRVsVRP τττ +++ −=                                  (27) 

We next construct 20 sVRP beta-sorted portfolios using the following procedure. We 

estimate rolling sVRP betas for each month using daily data over the previous month on 

the individual sVRP and the market sVRP. Each month, we rank all sVRP betas and 

construct 20 equally weighted sVRP beta-sorted portfolios. Portfolio 1 contains the most 

negative sVRP betas, while Portfolio 20 includes the most positive sVRP betas. The 

components of all portfolios are updated every month during the sample period. All 
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portfolios have approximately the same number of securities, with an average of 5.3 

securities per portfolio, and the asset must have at least 15 daily observations to be 

included in the portfolios.  

Figure 1 displays the behavior of portfolios 1, 10, and 20 sorted by sVRP beta, as 

well as the market sVRP. Note that we display the sVRP of the market using options 

written on the S&P 100 Index, so that the series contained in Figure 1 is not the cross-

sectional average of the individual sVRP. For the portfolios P10B and P20B and the 

market, the positive peaks coincide with periods of high realized volatility. Portfolio 

P1B tends to have a positive sVRP even during normal economic times, while portfolio 

P20B presents a negative sVRP during normal and expansion months and a positive 

sVRP during bad economic times. As expected, given that the sVRP beta of portfolio 

P20B is as high as 3.89, its behavior closely follows the market sVRP, but with more 

extreme peaks. In any case, this figure suggests that the ranking procedure generates 

sufficiently different cross-sectional behaviour to justify the analysis of the cross-

sectional empirical results under this sorting characteristic.8 

 

5. Volatility Risk Premium Characteristics at the Portfolio Level 

Table 1 reports the basic characteristics of our 20 sVRP beta-sorted portfolios. The 

average sVRP values are 10.3% and -3.4% for portfolios P1B and P20B, respectively. 

All of these figures are given in annualized terms. As expected, given the well-known 

evidence provided, among others, by Carr and Wu (2009), the market sVRP is, on 

average, negative and equal to -1.4%. The average annualized sVRP obtained directly 

from daily data present a very similar pattern, with the range going from 10.1% to          

                                                 
8 We also construct an alternative set of 20 portfolios based on the sVRP level. Using the sVRP on the last 
day of the previous month, we rank all sVRP values from the lowest (more negative) to the highest. 
Portfolio 1 contains the assets with the lowest sVRP, while portfolio 20 includes securities with the 
highest sVRP. Our main empirical results and conclusions will be checked employing this alternative 
ranking to analyze the robustness of our results. 
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-4.5%. The magnitude of the sVRP cross-sectional differences is large and seems to 

justify the study of their determinants. These averages indicate that investors may have 

very different volatility investment vehicles depending on whether they go long or short 

on volatility. We tend to identify the purchase of volatility as a hedging instrument 

against potentially large stock market declines. The evidence reported in Table 1 

suggests that, on average, going long on volatility can also lead to substantial gains, 

depending on the portfolio for which investors buy volatility.9 The standard deviations 

of the sVRP values of these portfolios suggest that portfolios with a higher average 

sVRP and, especially, those with a more negative average sVRP are the most volatile 

portfolios in terms of sVRP payoffs. As pointed out before, Figure 1 also reflects the 

highly volatile behavior of the sVRP of P20B, followed by the relatively smoother 

behavior of P1B. 

The fifth column of Table 1 contains the sVRP betas of each of the portfolios 

relative to the sVRP of the market index. Using monthly data, we estimate a market 

model type of ordinary least squares (OLS) regression of the following form: 

                                    τττ εβ +++ ++= t,t
m
t,t

p
t,t sVRP asVRP  ,                                   (28) 

where p
t,tsVRP τ+  is the volatility risk premium of each of the 20 portfolios, and 

m
t,tsVRP τ+ is the volatility risk premium of the market index from January 1996 to 

February 2011. The sVRP betas reflect the construction criterion, with unconditional 

sVRP betas of -0.95 for P1B and 3.89 for P20B. As in the case of average volatility risk 

premia, the cross-sectional differences in sVRP betas are large.  

                                                 
9 As discussed by Carr and Lee (2007, 2009), due to the concavity’s price impact associated with Jensen’s 
inequality, the difference between the value of a variance swap and the value of a volatility swap depends 
on the volatility of volatility of the underlying asset. If we recognize this potential bias and adjust our 
estimated volatility risk premia accordingly, the dispersion between the volatility risk premia across 
portfolios remains. See Burashi, Trojani, and Vedolin (2014) for a similar approximation. 
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Given that, for each month during the sample period, we can identify the 

underlying components of the 20 portfolios, we calculate the portfolio returns of the 20 

sVRP beta-sorted portfolios. In Table 1, we also display the market betas of the 20 

portfolios with respect to the US market portfolio index and the S&P 100 Index. As 

with the standard deviation, the cross-sectional behavior of market betas presents a U-

shaped pattern, with market betas being especially high for portfolios with a more 

negative average sVRP. Portfolio P20B has the highest return beta, with a value as high 

as 1.52 when measured relative to the S&P 100 Index return. 

Finally, the last column of Table 1 contains the average relative bid–ask spread of 

the options associated with the components of the 20 portfolios. The options traded on 

the components of portfolios with positive and high average sVRP values may be 

extremely illiquid. If this is the case, the replicating strategy employed to obtain 

synthetic variance swaps associated with illiquid options may be more costly than in 

other cases. However, the average bid–ask spreads reflects precisely the opposite. The 

portfolio P1B contains, on average, the most liquid options, while P20B presents the 

highest relative bid–ask spread across the 20 portfolios. Therefore, on average, market 

return betas and bid–ask spreads are higher for the two portfolios with the highest sVRP 

betas. 

Table 2 contains the correlation coefficients between representative portfolios 

sorted by sVRP betas and the market sVRP. Panel A employs monthly data, while Panel 

B displays the results with daily data. As expected, given its highly negative sVRP beta, 

the correlation between portfolio P1B and the rest of the portfolios becomes 

increasingly negative. Not surprisingly, the correlation of these portfolios with the 

market sVRP displays an increasingly monotonic relation going from a negative 
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correlation of -0.366 for P1B to a positive correlation of 0.863 for P20B. A similar 

pattern is found when using daily data. 

Table 3 reports the correlation between the market sVRP and several 

macroeconomic and financial indicators. The correlation between the excess market 

return and the market sVRP is negative and equals -0.273. This is well known and 

implies a negative correlation between market returns and realized market volatilities. 

Thus, going long on the market volatility swap provides a hedging investment vehicle 

for moments of extremely high market volatility. However, the compensation for this 

hedging strategy is, on average, negative. The results also show a negative correlation of 

the market sVRP with consumption growth, although the correlation is more negative 

for aggregate consumption than for stockholder consumption. The correlation with the 

HML and momentum factors is positive, while the correlation with the default premium 

is also positive and equals 0.075. As expected, the correlation between the default 

premium and either the excess market return or consumption growth is negative, being 

especially negative with respect to aggregate consumption growth. 

Panels A and B of Table 4 contain the full-sample sVRP betas for five 

representative sVRP beta-sorted portfolios controlling for well-known aggregate risk 

factors. The robustness of the magnitudes of the sVRP betas, reported again in the first 

column of Table 4, is clear across all portfolios. Independently of the factors employed 

in the regressions, portfolio P1B has a negative beta, while P20B has a very high but 

positive volatility risk premium beta. In all cases, we employ heteroskedasticity-

autocorrelation (HAC) robust standard errors. The relation between the sVRP betas and 

the average volatility risk premia of all portfolios is maintained across all aggregate 

factors. We may conclude that, for sVRP beta-sorted portfolios, the volatility risk 

premia are especially explained by the market sVRP, the excess market return, the 
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default premium, and consumption growth. However, sVRP betas do not seem to be 

significantly different from zero when stockholder consumption growth is used. 

Overall, we conclude that the unconditional betas of these state variables are, in most 

cases, statistically different from zero, even when we employ all three explanatory 

variables simultaneously.  

 

6. Cross-Sectional Variation of Portfolio Volatility Risk Premia 

6.1 GMM Estimation and Tests 

We next test the competing specifications given by models 1 through 7 described in 

Section 2 using the GMM estimation procedure and our set of 20 portfolios as test 

assets. Given the theoretical framework of Section 2, we work with the volatility risk 

premia of the 20 sVRP beta-sorted portfolios. We define an (N+1) x 1 vector containing 

the pricing errors generated by the model at time t. The first N conditions are the pricing 

errors of the model when explaining the volatility risk premia of N portfolios. The last 

condition forces the SDF to go to its mean valueµ . More precisely and using the 

fundamental pricing equation given by (7), the following vector defines the moment 

restrictions: 
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where tVRP s  is the N x 1 vector of volatility risk premia of the N portfolios at time t, 

N1  denotes an N x 1 vector of ones, ( )θtM  is one out of the seven specifications of 

equations (8) to (20), andθ  is the vector of the preference parameters for each 
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particular specification.10 The inclusion of the parameterα  enables the separate 

evaluation of the model’s ability to explain the temporal pricing behavior of the 

competing specifications and the cross section of volatility risk premia. So, if α  is zero, 

we can conclude that the model presents a zero average pricing error over the sample 

period. We define a vector containing the sample averages corresponding to the 

elements of f as 

                                             ( )
( )

T

,,f

,,g

T

1t
t

T

∑
==

µαθ
µαθ                                            (30) 

 and the GMM minimizes the quadratic form, 

                                               ( ) ( )µαθµαθ ,,gW,,g TTT
′                                            (31) 

where TW  is a weighting (N+1) x (N+1) matrix. 

 For the GMM estimation and to compare the performance of the models, we 

employ the pre-specified weighting matrix that contains the matrix proposed by HJ. It 

weights the moment conditions for the N testing portfolios using the (inverse) matrix of 

second moments of the volatility risk premia of our set of 20 portfolios. Moreover, as 

for Parker and Julliard (2005), the weight of the last moment condition is chosen large 

enough to ensure that significant changes in that weight have no effects on the 

parameter estimates. A weight of 1000 for the last moment condition ensures the 

stability of the estimator for the mean of the SDF with respect to different initial 

conditions. Hence, the pre-specified weighting matrix is 

                                            







′=

10000

0HJ
W

N

N
T                                                 (32) 

where 

                                                 
10 See Parker and Julliard (2005), and Yogo (2006) for examples of GMM estimation using the same 
estimation strategy. In the empirical estimation, we take the subjective discount rate as a fixed parameter 
that is equal to the inverse of the risk-free rate over the sample period. 
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and N0  is an N-dimensional vector of zeros. Given the unknown distribution of the 

performance test, we follow Jagannathan and Wang (1996), HJ and Parker and Julliard 

(2005) to infer the p-value of the test. The evaluation of the model performance is 

carried out by testing the following null hypothesis: 

                                                   ( )[ ] 0,,T:H 2
0 =µαθδ                                               (34) 

where the HJ distance is defined as 

                                          ( ) ( )µαθµαθδ ,,gW,,g TTT
′=                                        (35) 

It is well known that a limitation of the HJ distance in comparing asset pricing models is 

that it does not allow for statistical comparison among competing models. Chen and 

Ludvigson (2009) propose a procedure that can be used to compare any number of 

multiple competing models, some of them possibly non-linear. The benchmark model is 

the model with smallest squared HJ distances among competing models. The authors 

are able to compute the distribution of the differences between squared HJ distances via 

a block bootstrap, where the reference distance corresponds to that with the smallest HJ 

distance among all models. Kan and Robotti (2009, KR hereafter) also develop a 

methodology to test whether two competing models have the same HJ distance and they 

show that the asymptotic distribution of the test statistic depends on whether the models 

are correctly specified or not. In this paper, we apply the KR test of the comparison of 

the HJ distances of two alternative specifications under potentially misspecified 

models.11 

                                                 
11 We employ a version of their test for which the SDF does not have to be necessarily linear. 
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We briefly described their comparison test which amounts to obtaining the 

asymptotic distribution of 2
2

2
1

ˆˆ δδ − . Let t2t1t ssd −= , where 

( ) 2
1N1

2
t1t1tt1 12sVRPMsVRP2s δφφφ −′−′−′=  , where 11 Wg =φ  

( ) 2
2N2

2
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where ( )∑
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τ
τttd ddEv . In the empirical application, this expression can be 

approximated using the well-known Newey–West (1987) estimator given by, 
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6.2 GMM Empirical Results 

The empirical results using the GMM framework described above and the 20 sVRP 

beta-sorted portfolios are reported in Table 5. Panel A contains the results of the SDF 

specifications given by models 1 to 4 under both the aggregate consumption growth of 

non-durable goods and services (NDC) and stockholder growth consumption growth 

(SHC). The last column of Table 5 displays the HJ distance given by expression (35) 

with the corresponding p-value in parentheses. All alternative specifications are 

rejected. At the same, the estimators of the preference parameters across models tend to 

be estimated with a lot of noise. For all preference estimators, standard errors are 

reported in parentheses.12  

                                                 
12 In all cases, we check the shape of the objective function when we minimize the weighted average 
pricing errors according to expression (31) for the parameters estimated under the power, recursive, and 
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Regarding recursive preferences and power utility and for stockholder 

consumption, with the exception of recursive preferences with the market return as the 

proxy for continuation value, the magnitudes and the sign of the risk aversion 

coefficients are systematically reasonable. For recursive preferences with the market 

sVRP as the continuation value, the risk aversion coefficient is equal to 10.14. 

Unfortunately, in this case, the sign of the elasticity of intertemporal substitution is 

negative. A systematic difference when using one approximation of the continuation 

value or another relies on the sign of the elasticity of intertemporal substitution. When 

we employ either aggregate consumption growth or stockholder consumption growth 

and market wealth, the signs of the elasticity of intertemporal substitution are positive 

and less than one. However, when we use market volatility swaps, the elasticity of 

intertemporal substitution becomes negative for both types of consumption growth.  

We also report the results using the habit preferences for both types of 

consumption. It is important to notice that the empirical implementation of the model 

described by equations (11) to (15) simultaneously estimates all preference parameters 

and the surplus consumption process. To provide some intuition about the behavior of 

the resulting time-varying risk aversion given by tSγ̂ , where the curvature parameter 

estimator is reported in Table 5 and the surplus consumption is obtained using equations 

(13) and (14), Figure 2 displays the market volatility risk premium and the two-month 

lagged changes of risk aversion.13 We observe how the behavior of risk aversion 

changes follows the previously available payoffs of volatility swaps. Indeed, the 

correlation coefficient between both series is as large as 0.47. In any case, under the 

habit preference models, risk aversion estimates are 2.46 and 2.22 for aggregate 

                                                                                                                                               
habit preference specifications. The minimum value of the functions corresponds to the parameter 
estimators reported in Panel A of Table 5. The results strongly suggest that the numbers reported are 
robust to a large number of alternative initial conditions. 
 
13 This figure is constructed using stockholder consumption growth. 
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consumption growth and stockholder consumption growth, respectively, but the 

estimated coefficients are not statistically different from zero. In addition, the average 

pricing errors are statistically different from zero and the pricing specification is 

rejected with a p-value of the HJ distance of 0.0101.  

Panel B of Table 5 contains the results of the linear SDF specifications given by 

models 5 to 7. As in all previously analyzed models, the linear specifications are 

rejected. The parameters across the specifications using either the market sVRP as a 

factor or the SDF with skewness and kurtosis are estimated with low precision. The 

average pricing errors are all negative and statistically different from zero. Interestingly, 

the slope parameters of the two-factor model with the market sVRP and default are 

negative and statistically different from zero, which suggests that the risk premia 

associated with both risk factors are positive and statistically significant. 

We next empirically investigate whether competing models exhibit significantly 

different sample HJ distances. If our alternative specifications fail to find differences in 

significance across models, it would imply that the proposed factors are too noisy to 

explain the cross-sectional differences and to conclude that one model is superior to the 

others. We therefore employ the test statistic given by equation (36) based on the 

differences between the square of the HJ distances for two given models. Table 6 

reports the empirical results. The numbers in this table represent pairwise tests of 

equality of the squared HJ distances for all alternative specifications of SDF linear and 

non-linear models. We report the differences between the sample squared HJ distances 

of the models in row i and column j, or 2
j

2
i

ˆˆ δδ − . For example, given that the HJ 

distance of the power aggregate consumption model from Panel A of Table 5 is 0.7078 

and the HJ distance for the same model with stockholder consumption is 0.7060, the 

first number in the first row of Table 6, which is equal to 0.0026, is obtained as 0.70782 
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– 0.70602. As discussed above, the asymptotic distribution of this test statistic allows for 

misspecification of the models. The associated p-values are provided in parentheses.  

The results suggest that, generally, there is not statistical significance between the 

competing models when we employ the HJ distance. The only important exception is 

the model that combines the market volatility risk premium and the default premium as 

factors.14 The linear SDF on the market volatility risk premium and default premium is 

statistically superior to all the other models, with the exception of the recursive 

preference specification using aggregate consumption growth and with either market 

wealth or the market sVRP as continuation values. 

 

6.3 Two-Pass Cross-Sectional Estimation and Tests 

A test of the competing asset pricing models of the determinants of the cross section of 

volatility risk premia using the models’ beta specifications may help clarify matters. In 

particular, we now test the models described below using our 20 sVRP beta-sorted 

portfolios. In all cases, 0λ  is the zero-beta rate and kλ  for k = 1, …. , K are the risk 

premia associated with the K aggregate risk factors that drive the cross-sectional 

variation among volatility swap payoffs for our set of 20 portfolios, p = 1, …,20, as 

follows, 

a) Model 1: power utility with both aggregate consumption and stockholder 

consumption: 

                                           ( ) p
cndc0

p
t,tsVRPE βλλτ +=+                                           (37a) 

                                             ( ) p
scshc0

p
t,tsVRPE βλλτ +=+                                          (37b) 

                                                 
14 A model that recognizes the skewness and kurtosis of the underlying market return is also statistically 
superior to the one-factor model with the market sVRP. 
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b) Model 2: recursive utility with both aggregate consumption and stockholder 

consumption and market wealth and the market volatility risk premium: 

                                     ( ) p
mm

p
cndc0

p
t,tsVRPE βλβλλτ ++=+                                   (38a) 

                                     ( ) p
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p
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p
t,tsVRPE βλβλλτ ++=+                                   (38b) 

                                  ( ) p
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m
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p
t,tsVRPE βλβλλτ ++=+                             (38c) 

                                   ( ) p
msvrp

m
svrp

p
scshc0

p
t,tsVRPE βλβλλτ ++=+                            (38d) 

c) Model 3: habit preferences with time-varying risk aversion: 

Using the expression of risk aversion under the habit preference model, we can write the 

consumption surplus as tt RAS γ= , where tRA  is the time-varying risk aversion. Then, 

by taking logarithms in expression (12), the SDF can written as 

                   ( ) ττ
∆γ∆γρ

τ ∆γ∆γρττ ++
+−

+ +−+≅= ++
tt

racln
t,t racln1eMln tt            (39) 

which we write as a beta factor model, 
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rara

p
cndc0

p
t,tsVRPE βλβλλτ ++=+                                (40a) 

                                       ( ) p
rara

p
scshc0

p
t,tsVRPE βλβλλτ ++=+                                (40b) 

d) Model 4: the CAPM with market wealth: 

                                               ( ) p
mm0

p
t,tsVRPE βλλτ +=+                                            (41) 

e) Model 5: the Bakshi–Madan (2006) model with higher-order moments: 

                                        ( ) p

m
skku

p
mm0

p
t,t 2sVRPE βλβλλτ ++=+                               (42) 

d) Model 6: the CAPM with the market volatility risk premium as the only risk factor: 

                                              ( ) p
msvrp

m
svrp0

p
t,tsVRPE βλλτ +=+                                    (43) 

e) Model 7: a two-factor model with the market volatility risk premium and the default 

premium: 
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t,tsVRPE βλβλλτ ++=+                         (44) 

f) Model 8: a three-factor model with the market volatility risk premium, the default 

premium, and the HML Fama–French factor: 
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p
t,tsVRPE βλβλβλλτ +++=+                  (45) 

g) Model 9: a four-factor model with the market volatility risk premium, the default 

premium, the HML Fama–French factor, and market wealth: 
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Therefore, we now test the linear versions of the models using the alternative K-factor 

beta specifications described above in which the volatility risk premia are linear in the 

volatility risk premium betas, that is,( ) λXsVRPE = , where [ ]β,1X N=  and 

[ ]′′= 10 , λλλ  is a vector consisting of the zero-beta rate, 0λ , and the risk premia on the 

K factors, 1λ . The pricing errors of the N portfolios are given by 

                                                    ( ) λXsVRPEe −=                                                     (47) 

As a goodness- of- fit measure of the competing models, we employ the cross-sectional 

2R defined by Kan, Robotti, and Shanken (2013, KRS hereafter) as 
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and V is the variance–covariance matrix of the portfolio volatility risk premia. As KRS 

point out, the 2R statistics given by (48) is a relative measure of the goodness- of- fit 

since it compares the magnitude of the model’s expected return deviations to that of 

typical deviations from the average expected return. Moreover, 10 2 ≤≤ R  and 2R is a 

decreasing function of the aggregate pricing errors Q. Thus, 2R  given by (48) is a 

reasonable and well-defined measure of goodness- of- fit. Note that, in fact, we employ 

2R for average returns rather than the average of monthly 2R values. 

In addition, KRS show how to perform a test of whether the model has any 

explanatory power for pricing assets cross-sectionally. In other words, they test whether 

we can reject the null hypothesis of 0R2 = . The asymptotic test is given by 
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where the s´xi  are independent ( )12χ  random variables and the s´iξ are the K nonzero 
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where ( )1
ˆVar λ  is the expression adjusted by errors-in-the-variable and misspecification 

of the model.15 In particular, the asymptotic distribution of λ̂  under the misspecified 

models is 
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15 The p-values to test the null 0R:H 2

0 =  are calculated as before, using the procedure of Jagannathan 

and Wang (1996), HJ and Parker and Julliard (2005). 
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where Ω  is the variance–covariance matrix of the factors denoted by tf . 

Finally, we present the test for comparing two competing models. Suppose 

21 MM ≠  and 1RR0 2
2

2
1 <=< . Then 
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where   

( )t2t2
2
t2t1t1

2
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1
0t Mu2uMu2uQd +−−= −  

( ))sVRP(EsVRPVeu t
1

1t1 −′= −   and ( ))sVRP(EsVRPVeu t
1

2t2 −′= −  

 

6.4 Two-Pass Cross-Sectional Empirical Results 

As in Section 6.3, Panel A of Table 7 contains the results of the two-pass cross-sectional 

regressions using consumption-based factors, while Panel B of Table 7 displays the 

results concerning factor-based models. 

In all cases, we adapt the testing framework discussed above to the Fama–

MacBeth (1973) two-pass cross-sectional methodology, where we estimate rolling betas 

using the first 60 months of the sample as a fixed estimation period and then use a 

rolling window of 59 months of past data plus the month in which we perform the 

cross-sectional regression with the 20 portfolios. Hence, for each month t we always 
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employ a beta estimated with 60 observations. Moreover, below all risk premia 

estimators, we report the p-values associated with the traditional Fama–MacBeth 

standard error in parentheses and in brackets, with the standard error adjusted for errors 

in variables, and the potential misspecification of the model as captured by expression 

(51). We also provide two measures of goodness- of- fit. We report the mean absolute 

pricing error (MAE) calculated as 

                                                  ∑
=

=
20

1p
p ê 

20

1
MAE                                                    (53) 

where pê  is the mean pricing error associated with each of the 20 portfolios. The last 

column of Table 7 reports the 2R̂ value given by equation (48), where below we display 

the p-value for the test of the null hypothesis given by 0R2 =  from expression (49) and 

in brackets we report the standard error of 2R̂  under the assumption that 1R0 2 ≤≤ . 

Regarding consumption models, the results suggest that the standard errors of the 

risk premia estimators are very sensitive to potential model misspecification. At the 

same time, in most cases, the estimator of the zero-beta rate is statistically different 

from zero independently of the adjustment. These results already put into question the 

validity of the models. Indeed, all risk premia associated with consumption growth, 

either aggregate consumption or stockholder consumption, are not statistically different 

from zero. Consumption risk does not seem to be priced in the cross section of the 

volatility risk premia. The only statistically significant risk premia are the market 

portfolio return in the case of the recursive preference model with aggregate 

consumption growth and that related to the market volatility risk premium in the 

recursive model when we approximate the continuation value with volatility swaps 

rather than with the market portfolio return. As theory suggests, the sign of the 

statistically significant risk premium associated with market wealth is positive and it 
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becomes negative when we employ the market sVRP under recursive preferences. For 

habit preferences, the risk premium is negatively related to changes in risk aversion, 

with a p-value of 0.096, when we employ stockholder consumption growth but it lacks a 

lot of precision when we use aggregate consumption.16  Two additional results of Panel 

A are relevant. First, the MAE values reported in Panel A tend to be higher than those of 

Panel B. Second, for all models, we cannot reject the null hypothesis that2R is 

statistically equal to zero, since the standard errors of the 2R̂ values suggest all models 

are estimated with a great deal of noise.  

It may be easily the case that consumption risk is able to explain the cross section 

of volatility risk premia as long as we introduce ambiguity in the SDF. Under ambiguity 

aversion, Miao, Wei, and Zhou (2012) show that the market variance premium can be 

generated without resorting to exogenous stochastic volatility or jumps. By calibrating 

their model, they conclude that 96% of the market variance risk premium can be 

attributed to ambiguity aversion. Unfortunately, it is not clear how their approach can be 

extended to test the models cross-sectionally and with market data.  

Panel B of Table 7 shows that factor-based models explain the cross section of 

volatility risk premia much more accurately. In three cases, the asset pricing 

specification is not statistically rejected. These models always include the market sVRP 

and the default premium. They are also the models with a lower MAE. It is also true that 

these models with HML and the excess market returns as additional factors are not 

rejected, but the coefficients associated with either the excess market return or the HML 

factor are not statistically different from zero. However, in all three cases, the market 

                                                 
16 Understanding volatility swaps as hedging products, we theoretically expect a negative coefficient 
when regressing volatility risk premia on risk aversion betas as in expression (40). 
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volatility risk premium beta is significantly priced, with the expected negative sign.17 

Again, in all three cases, the default risk premium beta is positive and statistically 

different from zero. Hence, the higher the default beta, the higher the average payoff 

expected from volatility swaps in the cross section. Therefore, we find that, on average, 

the market sVRP is priced across portfolios and investors are compensated for bearing 

credit (default) risk. The two-factor model for volatility risk generates statistically 

significant risk premia of -0.006 and 0.012 for market volatility risk and default risk, 

respectively. The 2R̂ of the two-factor model is equal to 0.514 and is statistically 

different from zero, with a standard error of 0.211.18 Figure 3 displays the average 

realized sVRP against the fitted value for a selection of asset pricing models. The two-

factor model presents a better visual fit across all models. In any case, the difficulty of 

the theoretical two-factor model in explaining portfolio P20B must be recognized. The 

model generates a negative payoff for this portfolio, which is too extreme (too highly 

negative) to obtain a more precise linear fit relative to actual data. 

Finally, Table 8 contains the pairwise tests of equality of the two-pass cross 

sectional regression 2R values for alternative factor pricing models using the 20 sVRP 

beta-sorted portfolios. It contains the pairwise tests of equality of the two-pass cross-

sectional regression 2R values for alternative factor pricing models. We report the 

difference between the sample cross-sectional 2R values of the models in row i and 

column j, 2
j

2
i R̂R̂ − , and the associated p-values in parentheses for the test of 2

j
2
i R̂R̂ = . 

                                                 
17 The negative sign reflects the fact that the market volatility risk premium tends to be positive in events 
of high marginal utility. 
18 Similar results are found when we estimate the two-pass cross-sectional regression using a constant 
beta throughout the sample period. Moreover, when we check all our empirical results using the 
alternative set of 20 portfolios ranked according to the level of the volatility risk premium, the results are 
qualitative the same independently of using consumption-based models or factor-based specifications. 
The two-factor model, with the market volatility risk premium and the default premium, presents a better 
competing performance than the rest of the models analyzed in our research. All empirical results are 
available upon request from the authors. 
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As before, these p-values allow for misspecifications of the models. The role of the 

default premium seems to be important for the cross-sectional pricing of volatility 

swaps, even under a statistical comparison of 2R values. However, we cannot reject that 

the 2R̂ values between the two-factor model and the model extended with the HML 

factor and the excess market returns are equal. On the other hand, the two-factor model 

performs relatively well when compared with competing models. In any case, the 

results make clear the difficulty of distinguishing between the models from a statistical 

point of view. For example, the power of the test seems to be low when we only 

incorporate consumption data in the models or when we compare the two-factor model 

with consumption-based specifications. These models are estimated with a considerable 

amount of noise. We should not simply compare the point estimates of the 2R̂ values. 

As pointed out by KRS, it seems reasonable to focus on individual 2R̂ values rather 

than on differences across models. 

 

7. Why Does the Default Premium Explain the Cross sectional Variation of 

Volatility Risk Premia? 

The default beta risk with respect to the volatility risk premia seems to be consistently 

priced in our cross section. We next provide an intuitive but rigorous explanation of this 

finding. We employ the underlying components of the 20 sVRP beta-sorted portfolios to 

construct the corresponding 20 return portfolios. The first column of Table 9 reports the 

results of regressing the rate of returns of the 20 portfolios on the market return and the 

default premium. We display the default return beta once we control for the market 

return. Similarly, the second column contains the default return beta, as before 

controlling for the market return, but now with respect to the St. Louis Fed Financial 

Stress Index (STLFSI). The STLFSI measures the degree of financial stress in the 
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markets and is constructed from 18 series: seven interest rate series, six yield spreads, 

and five other indicators. Each of these variables captures some aspect of financial 

stress. In this regard, it is a broader measure of financial credit risk or financial stress 

than the default premium. By construction, the average value of the index is equal to 

zero. Thus, zero reflects normal financial market conditions. Values below zero suggest 

below-average financial stress, while values above zero indicate above-average 

financial stress.19 Increasing values of this index can therefore be interpreted in the same 

way as increasing values of the default premium.  

The empirical results from the first two columns of Table 9 suggest a similar 

interpretation. The behavior of the components of portfolios P1B, P2B and P3B is very 

different from the behavior of the underlying components of portfolios P19B and P20B. 

Recall that the first portfolios have, on average, positive volatility risk premia, while the 

last two portfolios have negative average volatility risk premia. Using either the default 

premium or the STLFSI, the relation between the returns of the first three portfolios and 

financial stress is positive. When default or the financial stress index increases, the 

returns of these portfolios increase. These portfolios seem to be good hedgers relative to 

financial stress. However, the last two portfolios move negatively with respect to 

financial stress. Even when the market return is controlled for, when measures of 

financial stress increase, their return significantly decreases. These results suggest that 

investors may rationally hedge the financial stress risk of these components by buying 

volatility swaps. For those assets negatively affected by financial stress, they are willing 

to pay a high volatility swap to cover that credit/financial risk stress. Therefore, on 

average, we can expect a negative payoff from holding long positions on volatility 

swaps associated with these assets and a positive average payoff from assets moving 

                                                 
19 See http://www.stlouisfed.org/newsroom/financial-stress-index/ for further details. 
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positively with default risk. This is exactly what we display in Table 9. It seems that the 

differences in the cross section of our sVRP beta-sorted portfolios reflect a very 

different behavior of these assets with respect to credit/financial stress. To complete our 

argument, we should find evidence that the volatility risk premia of portfolios P19B and 

P20B move positively with financial stress. In other words, the volatility payoff of these 

portfolios should cover increasing financial stress risk. This is again what we report in 

the third column of Table 9.  

A second possibility to justify the pricing of default betas in the cross section of 

the volatility risk premia is to replicate the findings of Frazzini and Pedersen (2014) 

with our data and sample period. A well-known empirical finding in asset pricing is that 

the relation between average returns and beta risk is too flat relative to the theoretical 

predictions of the CAPM. Frazzini and Pedersen (2014) argue that an asset pricing 

model with leverage and margin constraints is able to explain this anomaly. By 

leveraging and de-leveraging the tangency portfolio, investors can control their risk–

return tradeoff according to their risk preferences. However, some institutional investors 

cannot use leverage and other investors who are able to employ leverage are constrained 

by their margin requirements. These investors will overweight risky assets implying that 

high-beta assets require lower risk-adjusted returns than low-beta assets. The authors 

illustrate their argument by proposing a market neutral betting-against-beta (BAB) 

factor consisting of long levered low-beta stocks and short de-levered high-beta 

securities: 

                                   ( ) ( )f
H

1tH
t

f
L

1tL
t

BAB
1t RR

1
RR

1
R −−−= +++

ββ
                           (54) 

where L and H represent low- and high- beta respectively. The authors provide 

convincing evidence that the BAB generates high and consistent performance in each of 

the major global markets and asset classes and that the results are independent of the 
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asset pricing model employed. A key result is that when funding constraints become 

more binding and the leveraged investors hit their margin constraint, they must de-

leverage. This suggests the required rate of return of portfolio BAB increases and the 

contemporaneous realized BAB returns tend to become negative.  

Using the rates of return of our 20 sVRP beta-sorted portfolios, and our sample 

period, we construct the BAB factor using expression (54). Table 10 contains the alphas 

generated by our BAB factor when we control for typical asset pricing risk factors. In 

particular, we regress the BAB factor returns on the market, on the Fama–French 

factors, and on the three-factor model augmented with the momentum factor and the 

aggregate liquidity measure of Pastor and Stambaugh (2003). As expected, the BAB 

portfolio consistently shows positive and statistically significant risk-adjusted returns. 

However, when we control for the market excess return and either funding liquidity, 

captured by the TED spread, or credit risk proxied by the default premium, the alphas 

are no longer statistically significant. This suggests that the tightening of funding 

liquidity and borrowing constraints may explain the behavior of the extreme sVRP beta-

sorted portfolios in terms of average volatility risk premia and their betas. As in the case 

of the Frazzini and Pedersen (2014) paper, funding liquidity seems to have important 

implications for asset pricing and, in particular, for pricing volatility swaps. 

 

8. Conclusions 

Most of the literature dealing with variance or volatility swaps is concerned with the 

variance risk premium at the market level. The empirical evidence shows that the 

market variance risk premium has very useful economic information content. Given this 

evidence, it is surprising how little research analyzes variance or volatility swaps at the 

individual or portfolio level. This paper discusses and tests the cross-sectional variation 
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of the volatility risk premia for a set of 20 portfolios. We rank individual sVRP values 

by their betas with respect to the market volatility risk premium. Accordingly, we 

employ a set of 20 sVRP beta-sorted portfolios to analyze the determinants of their 

cross-sectional variation. We show that beta with respect to the market volatility risk 

premia and the default beta have statistically significant risk premia that help explaining 

the cross-sectional variation of average volatility risk premia. This is especially the case 

for the default premium factor and the empirical result holds even if we allow for 

potential misspecification of the models. Finally, we relate our findings to 

credit/financial stress risk and to funding liquidity risk. We show that the success of the 

default premium in the cross-sectional variation of the volatility risk premia can be 

explained by the very different behavior that the underlying components of our 20 sVRP 

betas-sorted portfolios have with respect to financial stress risk.  
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Table 1 
Volatility Risk Premia: Descriptive Statistics and Betas, 

Portfolios Sorted by Volatility Risk Premium Betas, January 1996 to February 2011 

sVRP 
Beta- 
Sorted 

Portfolios  

Average 
sVRP 

(Monthly) 

Average 
sVRP 

 (Daily) 

Standard 
Deviation 
(Monthly) 

Standard 
Deviation 
(Daily) 

sVRP 
Beta 

(S&P100 
Market 
sVRP)  

 

Market 
Return 
Beta 

(Overall 
US 

Market) 

Market 
Return 
Beta 

(S&P100 
Market) 

Relative 
Bid-
Ask 

Spread 

 
P1B 

 
0.103 

 
0.101 

 

 
0.179 

 
0.188 

 

 
-0.946 

 

 
1.164 

 
1.168 

 
0.257 

 
P2B 

 
0.040 

 
0.043 

 

 
0.092 

 

 
0.096 

 

 
-0.229 

 

 
1.042 

 
1.050 

 
0.256 

 
P3B 

 
0.024 

 
0.023 

 

 
0.082 

 

 
0.080 

 

 
0.056 

 

 
0.893 

 
0.922 

 
0.259 

 
P4B 

 
0.018 

 

 
0.014 

 

 
0.072 

 

 
0.067 

 

 
0.223 

 

 
1.017 

 
1.008 

 
0.265 

 
P5B 

 
0.009 

 

 
0.005 

 

 
0.066 

 

 
0.061 

 

 
0.307 

 

 
0.758 

 
0.771 

 
0.260 

 
P6B 

 
0.001 

 

 
-0.002 

 

 
0.062 

 

 
0.060 

 

 
0.368 

 

 
0.890 

 
0.897 

 
0.270 

 
P7B 

 
-0.0002 

 

 
-0.006 

 

 
0.067 

 

 
0.063 

 

 
0.511 

 

 
0.884 

 
0.918 

 
0.268 

 
P8B 

 
-0.004 

 

 
-0.010 

 

 
0.067 

 

 
0.063 

 

 
0.558 

 

 
0.964 

 
0.987 

 
0.261 

 
P9B 

 
-0.010 

 

 
-0.016 

 

 
0.069 

 

 
0.065 

 

 
0.704 

 

 
0.850 

 
0.851 

 
0.270 

 
P10B 

 
-0.010 

 

 
-0.017 

 

 
0.077 

 

 
0.073 

 

 
0.819 

 

 
0.931 

 
0.977 

 
0.273 

 
P11B 

 
-0.019 

 

 
-0.023 

 

 
0.079 

 

 
0.076 

 

 
0.919 

 

 
0.867 

 
0.868 

 
0.269 

 
P12B 

 
-0.021 

 

 
-0.027 

 

 
0.086 

 

 
0.083 

 

 
1.011 

 

 
0.949 

 
0.958 

 
0.281 

 
P13B 

 
-0.026 

 

 
-0.030 

 

 
0.088 

 

 
0.090 

 

 
1.009 

 

 
0.823 

 
0.874 

 

 
0.275 

 
P14B 

 
-0.022 

 

 
-0.032 

 

 
0.099 

 

 
0.099 

 

 
1.219 

 

 
0.972 

 
1.013 

 
0.279 

 
P15B 

 
-0.028 

 

 
-0.034 

 

 
0.106 

 

 
0.111 

 

 
1.327 

 

 
1.012 

 
1.020 

 
0.278 

 
P16B 

 
-0.031 

 

 
-0.037 

 

 
0.119 

 

 
0.125 

 

 
1.444 

 

 
0.873 

 
0.935 

 
0.277 

 
P17B 

 
-0.029 

 

 
-0.039 

 

 
0.139 

 

 
0.139 

 

 
1.782 

 

 
1.138 

 
1.142 

 
0.283 

 
P18B 

 
-0.029 

 

 
-0.043 

 

 
0.165 

 

 
0.162 

 

 
2.068 

 

 
1.163 

 
1.164 

 
0.281 

 
P19B 

 
-0.035 

 

 
-0.046 

 

 
0.192 

 

 
0.193 

 

 
2.420 

 

 
1.233 

 
1.241 

 
0.286 

 
P20B 

 
-0.034 

 

 
-0.045 

 

 
0.312 

 

 
0.318 

 

 
3.891 

 

 
1.463 

 
1.521 

 
0.296 

Market 
sVRP 

 
-0.014 

 

 
-0.014 

 

 
0.069 

 

 
0.069 

 

 
1.000 

 
0.929 

 
1.000 

 
- 

The volatility risk premium (sVRP) for each portfolio is defined as the difference between the realized volatility and the model-free risk-
neutral integrated return volatility over the corresponding month. The risk-neutral volatility is obtained by the set of prices of options on 
each underlying individual security with one month to maturity. The numbers reported are the annualized volatility risk premia for both 
the 20 portfolios and the S&P 100 Index. Portfolio 1 contains the securities with the lowest sVRP betas and portfolio 20 includes 
securities with the highest sVRP betas. The portfolios are updated each month during the sample period. The sVRP beta is the OLS 
regression coefficient from linear regressions of the monthly sVRP of each portfolio on the sVRP of the S&P 100 market index. The 
market return betas are the OLS regression coefficients from linear regressions of the monthly return of each portfolio on the market 
return index given by either the S&P 100 Index or the overall US value-weight market return of all CRSP firms listed on the NYSE, 
AMEX, or NASDAQ. The monthly data refers to the observation of each portfolio on the last day of each month. The betas are always 
estimated at the monthly frequency. The relative bid-ask spread is the average bid-ask spread for all traded options on the underlying 
stock that belong to a given portfolio calculated at the end of the last day of each month. 
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Table 2 
Correlation Coefficients between the Volatility Risk Premia for Representative sVRP Beta-Sorted 

Portfolios, January 1996 to February 2011 
Panel A: 
Monthly 

Correlations 

P5B P10B P15B P20B Market 
sVRP 

P1B 

 

0.414 -0.152 -0.381 -0.452 -0.366 

P5B 

 

1 0.607 0.314 0.194 0.323 

P10B 

 

 1 0.834 0.726 0.736 

P15B 

 

  1 0.927 0.863 

P20B 

 

   1 0.863 

Panel B:      
Daily 

Correlations 

P5B P10B P15B P20B Market 
sVRP 

P1B 

 

0.427 -0.183 -0.441 -0.538 -0.435 

P5B 

 

1 0.589 0.333 0.155 0.231 

P10B 

 

 1 0.865 0.685 0.733 

P15B 

 

  1 0.911  0.828 

P20B 

 

   1 0.841 

This table reports the correlation coefficients estimated for the overall sample period using monthly (daily) data for the volatility risk 
premia of the representative portfolios. The volatility risk premium (sVRP) for each portfolio is defined as the difference between the 
realized volatility and the model-free risk-neutral integrated return volatility over the corresponding month. The risk-neutral volatility is 
obtained by the set of prices of options on each underlying individual security with one month to maturity. Portfolio 1 contains the 
securities with the lowest sVRP betas, and portfolio 20 includes securities with the highest sVRP betas. The portfolios are updated each 
month during the sample period. 
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Table 3 
Correlation Coefficients between State Variables, January 1996 to February 2011 

 
Monthly  

Correlations 

 
Excess  

US Market 
Return 

 
Cons 

Growth 

 
Stockholder 

Cons 
Growth 

 
DEF 

 
SMB 

 
HML 

 
MOM 

Market 
sVRP 

-0.273 -0.189 -0.118 0.075 0.019 0.130 0.185 

Excess 
Market 
Return 

1 0.213 0.769 -0.132 0.242 -0.247 -0.296 

 
Cons 

Growth 
 1 0.131 -0.356 0.043 -0.125 -0.356 

Stockholder 
Cons 

Growth 
  1 -0.149 0.449 0.237 -0.301 

DEF    1 0.058 -0.087 -0.198 

SMB     1 -0.372 0.091 

HML      1 -0.156 

This table reports the correlation coefficients estimated for the overall sample period using monthly data. The market volatility risk 
premium is defined as the difference between the realized volatility and the model-free risk-neutral integrated return volatility over the 
corresponding month. The risk-neutral volatility is obtained by the set of prices of options on the S&P100 index with one month to 
maturity. In this table, Cons Growth indicates the monthly growth rate of seasonally adjusted real per capita consumption expenditures on 
non-durables goods and services; Stockholder Cons Growth is the Malloy, Moskowitz, and Vissing-Jorgensen (2011) measure of 
consumption growth from stockholders; Excess Market Return, SMB, HML, and MOM are the Fama-French factors, and the momentum 
factor obtained from the Kenneth French’s website, and DEF is the default premium calculated as the difference between Moody’s yield on 
Baa corporate Bbonds and the 10-year government bond yield. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 47 

Table 4 
Panel A: Consumption and Market Factor Betas for Five Portfolios Sorted by the Volatility Risk Premium 

Beta, January 1996 to February 2011  
sVRP Beta- 

Sorted 
Portfolios 

Market 
sVRP 

Market 
sVRP 

Excess 
Market 
Return 

Cons 
Growth  

Market 
sVRP 

Excess 
Market 
Return 

Stock Cons 
Growth 

P1B Beta 
(t-stat) 

[R2-adj] 

-0.946 
(-5.28) 
[0.129] 

-0.764 
(-4.18) 
[0.178] 

0.257 
(3.43) 

 

0.440 
(0.31) 

 

-0.757 
(-4.14) 
[0.178] 

0.307 
(2.65) 

 

-0.255 
(-0.51) 

 
P5B Beta 

(t-stat) 
[R2-adj] 

 
0.307 
(4.58) 
[0.100] 

 
0.402 
(6.04) 
[0.193] 

 
0.116 
(4.25) 

 

 
0.748 
(1.43) 

 

 
0.386 
(5.76) 
[0.184] 

 
0.113 
(2.66) 

 

 
0.054 
(0.30) 

 
P10B Beta 

(t-stat) 
[R2-adj] 

 
0.819 

(14.61) 
[0.540] 

 
0.873 

(15.37) 
[0.571] 

 
0.026 
(1.11) 

 

 
1.561 
(3.49) 

 

 
0.844 

(14.35) 
[0.542] 

 
0.033 
(0.89) 

 

 
0.037 
(0.23) 

 
P15B Beta 

(t-stat) 
[R2-adj] 

 
1.327 

(22.94) 
[0.744] 

 
1.327 

(22.45) 
[0.757] 

 
-0.050 
(-2.08) 

 

 
1.429 
(3.07) 

 

 
1.294 

(21.35) 
[0.745] 

 
-0.063 
(-1.63) 

 

 
0.138 
(0.84) 

 
P20B Beta 

(t-stat) 
[R2-adj] 

 
3.891 

(22.87) 
[0.743] 

 
3.769 

(21.58) 
[0.754] 

 
-0.227 
(-3.17) 

 

 
1.292 
(0.94) 

 

 
3.706 

(21.28) 
[0.756] 

 
-0.347 
(-3.15) 

 

 
0.732 
(1.55) 

 
Panel B: Default Premium, Consumption, and Market Factor Betas for Five Portfolios Sorted by the 

Volatility Risk Premium Beta, January 1996 to February 2011  
sVRP Beta- 

Sorted 
Portfolios 

Market 
sVRP 

Market 
sVRP 

Excess 
Market 
Return 

DEF 
Market 
sVRP 

Cons 
Growth 

DEF 

 
P1B Beta 

(t-stat) 
[R2-adj] 

 
-0.946 
(-5.28) 
[0.129] 

 
-0.777 
(-4.30) 
[0.180] 

 
0.267 
(3.60) 

 

 
0.296 
(0.75) 

 

 
-0.917 
(-5.02) 
[0.126] 

 
1.648 
(1.06) 

 

 
0.290 
(0.67) 

 
 

P5B Beta 
(t-stat) 

[R2-adj] 

 
0.307 
(4.58) 
[0.100] 

 
0.393 
(5.98) 
[0.196] 

 
0.117 
(4.34) 

 

 
-0.242 
(-1.69) 

 

 
0.334 
(4.97) 
[0.122] 

 
0.834 
(1.45) 

 

 
-0.234 
(-1.47) 

 
 

P10B Beta 
(t-stat) 

[R2-adj] 

 
0.819 

(14.61) 
[0.540] 

 
0.856 

(15.48) 
[0.587] 

 
0.028 
(1.25) 

 

 
-0.531 
(-4.40) 

 

 
0.860 

(16.06) 
[0.596] 

 
1.088 
(2.38) 

 

 
-0.443 
(-3.50) 

 
 

P15B Beta 
(t-stat) 

[R2-adj] 

 
1.327 

(22.94) 
[0.744] 

 
1.309 

(22.37) 
[0.758] 

 
-0.046 
(-1.94) 

 

 
-0.402 
(-3.15) 

 

 
1.358 

(23.69) 
[0.757] 

 
0.903 
(1.85) 

 

 
-0.286 
(-2.11) 

 
 

P20B Beta 
(t-stat) 

[R2-adj] 

 
3.891 

(22.87) 
[0.743] 

 
3.747 

(21.60) 
[0.753] 

 
-0.217 
(-3.04) 

 

 
-0.053 
(-0.14) 

 

 
3.903 

(22.42) 
[0.740] 

 
0.739 
(0.50) 

 

 
0.152 
(0.37) 

 
This table reports the OLS risk premium volatility betas. The volatility risk premium (sVRP) for each portfolio is defined as the 
difference between the realized volatility and the model-free risk-neutral integrated return volatility over the corresponding month. 
The risk-neutral volatility is obtained by the set of prices of options on each underlying individual security with one month to 
maturity. Portfolio 1 contains the securities with the lowest sVRP betas and portfolio 20 includes securities with the highest sVRP 
betas. The portfolios are updated each month during the sample period. The sVRP beta is the OLS regression coefficient from linear 
regressions of the monthly sVRP of each portfolio on the sVRP of the S&P 100 market index, consumption growth, stockholder 
consumption growth, the US stock market return, and the default premium. The monthly data refers to the observation of each 
portfolio on the last day of each month. The betas are always estimated at the monthly frequency.  
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Table 5 
GMM Estimation for Alternative Volatility Risk Premium Models Using 

Portfolios Sorted by the Volatility Risk Premium Betas, January 1996 to February 2011 
 

Panel A 
 

 
γ 

 
α 

 
κ 

 
a 

 
b 

 
c 

 
HJ Distance 

 
NDC 

 
-34.873 
(106.43) 

 
-0.0023 
(0.0012) 

 
- 

 
- 

 
- 

 
- 

 
0.7078 

(0.0000) 

 
Power 

 
SHC 
 

 
7.810 

(12.61) 

 
-0.0027 
(0.0010) 

 
- 

 
- 

 
- 

 
- 

 
0.7060 

(0.0000) 

 
NDC 

 
-372.454 
(166.28) 

 
-0.0007 
(0.0017) 

 
75.601 
(65.14) 

 
- 

 
- 

 
- 

 
0.6956 

(0.0009) 

 
Recursive 

 
SHC 

 

 
-7.394 
(20.91) 

 
-0.0027 
(0.0010) 

 
3.483 
(4.26) 

 
- 

 
- 

 
- 

 
0.7018 

(0.0000) 

 
NDC 

 
2.461 
(7.40) 

 
-0.0030 
(0.0012) 

 
- 

 
- 

 
- 

 
- 

 
0.7812 

(0.0007) 

 
Habit 

 
SHC 

 
2.224 
(4.86) 

 
-0.0029 
(0.0013) 

 
- 

 
- 

 
- 

 
- 

 
0.7644 

(0.0101) 
 

NDC 
 

-308.509 
(166.89) 

 
-0.0003 
(0.0015) 

 
-41.286 
(69.85) 

 
- 

 
- 

 
- 

 
0.7012 

(0.0074) 

 
Recursive 

sVRPm 

 
SHC 

 
10.140 
(15.47) 

 
-0.0028 
(0.0011) 

 
-40.819 
(872.33) 

 
- 

 
- 

 
- 

 
0.7056 

(0.0000) 
 

Panel B 
 

 
γ 

 
α 

 
κ 

 
a 

 
b 

 
c 

 
HJ-D 

 
Linear M on 

Rm +Rm
2 

 
- 

 
-0.0024 
(0.0014) 

 
- 

 
-0.0267 
(0.432) 

 
-0.0101 
(0.148) 

 
-0.0001 
(0.001) 

 
                0.6875 
              (0.0000) 

 
Linear M on 

sVRPm 

 
- 

 
-0.0025 
(0.0010) 

 
- 

 
0.1406 
(0.719) 

 
-0.0058 
(0.576) 

 
- 

 
0.6994 

(0.0000) 

 
Linear M on 
sVRPm+DEF 

 
- 

 
-0.0032 
(0.0008) 

 
- 

 
1.3874 
(0.495) 

 
-0.4511 
(0.117) 

 
-0.4634 
(0.215) 

 
0.5871 

(0.0000) 

This table reports the parameters obtained under the GMM estimation of alternative asset pricing models with different preference 
specifications using the second order moments matrix as the weighting GMM matrix for all cases.  The numbers in parentheses below 
the estimated parameters are standard errors while the numbers in parentheses below the HJ distance are p-values. In this table, NDC 
refers to non-durable consumption and SHC indicates stockholder aggregate consumption. All models are estimated with monthly data. 
Habit is the Campbell-Cochrane model, where the estimated gamma is estimated simultaneously with the estimation of the surplus 
consumption process. The recursive specification under sVRPm includes consumption growth and the market volatility risk premium as 
the second factor rather than the stock market return. The linear SDF specifications include a model that allows for skewness as a 
determinant factor for volatility risk premia, the market volatility risk premium as the individual factor, and the model adding default as 
the second factor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 49 

Table 6 
Model Comparison Using the HJ Distance for Portfolios Sorted by the Volatility Risk Premium Betas: 

Tests of the Equality of the Squared HJ Distance 

Models 
Power 
SHC 

Recur 
NDC 

Recur 
SHC 

Habit  
NDC 

Habit  
SHC 

Recur 
sVRPm 
NDC 

Recur 
sVRPm 
SHC 

Linear 
M on 

Rm+Rm
2 

Linear 
M on 

sVRPm 

Linear
M on 

sVRPm

+DEF 

Power 
NDC 

0.0026 
(0.718) 

0.0172 
(0.948) 

0.0085 
(0.438) 

-0.1093 
(0.181) 

-0.0832 
(0.425) 

0.0093 
(0.962) 

0.0032 
(0.663) 

0.0284 
(0.073) 

0.0118 
(0.540) 

0.1563 
(0.000) 

Power 
SHC 

 
0.0146 
(0.956) 

0.0059 
(0.477) 

-0.1119 
(0.162) 

-0.0858 
(0.390) 

0.0068 
(0.973) 

0.0006 
(0.713) 

0.0259 
(0.142) 

0.0093 
(0.658) 

0.1538 
(0.000) 

Recur 
NDC 

  
-0.0087 
(0.974) 

-0.1265 
(0.650) 

-0.1004 
(0.722) 

-0.0078 
(0.932) 

-0.0140 
(0.958) 

0.0113 
(0.966) 

-0.0053 
(0.984) 

0.1392 
(0.605) 

Recur 
SHC 

   
-0.1178 
(0.138) 

-0.0917 
(0.369) 

0.0008 
(0.997) 

-0.0053 
(0.572) 

0.0200 
(0.323) 

0.0034 
(0.887) 

0.1478 
(0.000) 

Habit  
NDC 

    
0.0261 
(0.838) 

0.1186 
(0.585) 

0.1125 
(0.162) 

0.1377 
(0.111) 

0.1211 
(0.169) 

0.2656 
(0.004) 

Habit  
SHC 

     
0.0925 
(0.682) 

0.0864 
(0.385) 

0.1117 
(0.307) 

0.0951 
(0.389) 

0.2395 
(0.032) 

Recur 
sVRPm 
NDC 

      
-0.0061 
(0.975) 

0.0191 
(0.925) 

0.0025 
(0.990) 

0.1470 
(0.472) 

Recur 
sVRPm  
SHC 

       
0.0252 
(0.147) 

0.0086 
(0.676) 

0.1531 
(0.000) 

Linear M 
on  

Rm+Rm
2 

        
-0.0166 
(0.000) 

0.1279 
(0.000) 

Linear M 
on 

sVRPm 
         

0.1445 
(0.000) 

The reported numbers are the results of pairwise tests of equality of the squared HJ distance for alternative specifications of SDF linear and 

non-linear models. We report the difference between the sample squared HJ-distances of the modes in row i and column j, 2
j

2
i

ˆˆ δδ − , and the 

associated p-value in parentheses for the test of the null hypothesis: 2
j

2
i

ˆˆ δδ = . The p-values are computed under the assumption that the 

models are potentially misspecified. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 50 

Table 7 
Two-Pass Cross-Sectional Fama–MacBeth Estimation for Alternative Volatility Risk Premium Models, 

Using Portfolios Sorted by the Volatility Risk Premium Betas, January 1996 to February 2011 
 

Panel A: Two-Pass Cross-Sectional Regressions with Consumption-Based Factors 
 

SDF 
 

 
λ0 

 
λndc 

 
λshc 

 
λra 

 
λm 

 
λm

2 
 

λsvrp
m 

 
λdef 

 
λhml 

 
MAE 

 
R2 

NDC 
 

0.001 
(0.601) 
[0.717] 

-0.000 
(0.902) 
[0.972] 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
0.0049 

0.0057 
(0.908) 
[0.222] 

Power 

SHC 
 

0.002 
(0.400) 
[0.370] 

 
- 

0.014 
(0.000) 
[0.118] 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
0.0036 

0.0152 
(0.759) 
[0.348] 

NDC 
 

-0.003 
(0.015) 
[0.356] 

0.003 
(0.000) 
[0.510] 

 
- 

 
- 

0.064 
(0.000) 
[0.054] 

 
- 

 
- 

 
- 

 
- 

 
0.0029 

0.0635 
(0.803) 
[0.369] 

Recursive 

SHC 
 

-0.000 
(0.764) 
[0.763] 

 
- 

0.004 
(0.039) 
[0.507] 

 
- 

0.031 
(0.000) 
[0.161] 

 
- 

 
- 

 
- 

 
- 

 
0.0033 

0.0541 
(0.627) 
[0.163] 

NDC 
 

0.002 
(0.165) 
[0.112] 

0.001 
(0.216) 
[0.651] 

 
- 

-0.016 
(0.303) 
[0.692] 

 
- 

 
- 

 
- 

 
- 

 
- 

 
0.0035 

0.0117 
(0.900) 
[0.421] 

Habit 

SHC 
 

0.001 
(0.536) 
[0.572] 

 
- 

0.008 
(0.001) 
[0.287] 

-0.078 
(0.000) 
[0.096] 

 
- 

 
- 

 
- 

 
- 

 
- 

 
0.0028 

0.031 
(0.824) 
[0.224] 

NDC 
 

0.002 
(0.075) 
[0.509] 

0.002 
(0.003) 
[0.608] 

 
- 

 
- 

 
- 

 
- 

-0.007 
(0.000) 
[0.027] 

 
- 

 
- 

 
0.0028 

0.1290 
(0.417) 
[0.284] 

Recursive 
sVRPm 

SHC 
 

0.002 
(0.103) 
[0.213] 

 
- 

0.001 
(0.749) 
[0.931] 

 
- 

 
- 

 
- 

-0.007 
(0.000) 
[0.153] 

 
- 

 
- 

 
0.0031 

0.0873 
(0.462) 
[0.170] 

 
Panel B: Two-Pass Cross-Sectional Regressions with State Variables-Based Factors 

 
SDF 

 

 
λ0 

 
λndc 

 
λshc 

 
λra 

 
λm 

 
λm

2 
 

λsvrp
m 

 
λdef 

 
λhml 

 
MAE 

 
R2 

sVRPm+DEF 
+HML 

0.009 
(0.000) 
[0.002] 

 
- 

 
- 

 
- 

 
- 

 
- 

-0.007 
(0.000) 
[0.014] 

0.012 
(0.000) 
[0.000] 

0.021 
(0.003) 
[0.255] 

 
0.0017 

0.5233 
(0.009) 
[0.242] 

sVRPm+DEF 
+HML+Rm 

0.009 
(0.000) 
[0.002] 

 
- 

 
- 

 
- 

-0.010 
(0.154) 
[0.658] 

 
- 

-0.007 
(0.000) 
[0.049] 

0.014 
(0.000) 
[0.000] 

0.019 
(0.006) 
[0.335] 

 
0.0016 

0.5341 
(0.017) 
[0.219] 

CAPM 
0.002 

(0.284) 
[0.285] 

 
- 

 
- 

 
- 

0.031 
(0.001) 
[0.167] 

 
- 

 
- 

 
- 

 
- 

 
0.0035 

0.0751 
(0.292) 
[0.176] 

Rm+Rm
2 

0.001 
(0.550) 
[0.648] 

 
- 

 
- 

 
- 

0.036 
(0.000) 
[0.014] 

0.001 
(0.041) 
[0.295] 

 
- 

 
- 

 
- 

 
0.0022 

0.1031 
(0.193) 
[0.148] 

sVRPm 
0.005 

(0.000) 
[0.001] 

 
- 

 
- 

 
- 

 
- 

 
- 

-0.006 
(0.000) 
[0.109] 

 
- 

 
- 

 
0.0035 

0.0879 
(0.148) 
[0.173] 

sVRPm+DEF 
0.007 

(0.000) 
[0.006] 

 
- 

 
- 

 
- 

 
- 

 
- 

-0.006 
(0.000) 
[0.049] 

0.012 
(0.000) 
[0.000] 

 
- 

 
0.0019 

0.5139 
(0.001) 
[0.211] 

We report the parameter estimated from the two-pass cross sectional regression with rolling betas for alternative asset pricing models. MAE is the mean 
pricing errors associated with the 20 portfolios ranked by their volatility risk premia. The R2 value is the sample cross-sectional R2 as calculated by 

KRS. The numbers in parentheses are the traditional Fama–MacBeth standard errors of the alternative parameter estimates and the numbers in 
brackets are p-values associated with the KRS standard errors adjusted by errors- in- the variables and potential misspecification of the models. Below 
the cross-sectional R2 values, we report the p-value for the test of H0 : R

2 = 0 and in brackets we display the standard error of R2 under the assumption 
that 0 < R2 < 1. 
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Table 8 
Model Comparison Using the Two-Pass Cross-Sectional Fama–MacBeth Estimation for Portfolios Sorted 

by the Volatility Risk Premium Betas: Tests of the Equality of the Cross-Sectional R2 Values 

Models 
Power 
SHC 

Recur 
NDC 

Recur 
SHC 

Habit  
NDC 

Habit  
SHC 

Recur 
sVRPm 
NDC 

Recur 
sVRPm 
SHC 

sVRPm 

+DEF 
+HML  

sVRPm 

+DEF 
+HML 
+Rm 

CAPM Rm+Rm
2 sVRPm 

sVRPm 

+DEF 

Power 
NDC 

-0.0096 
(0.978) 

-0.0579 
(0.902) 

-0.0484 
(0.841) 

-0.0060 
(0.986) 

-0.0256 
(0.920) 

-0.1234 
(0.762) 

-0.0816 
(0.745) 

-0.5176 
(0.124) 

-0.5284 
(0.100) 

-0.0694 
(0.759) 

-0.0975 
(0.708) 

-0.0822 
(0.712) 

 
-0.5083 
(0.112) 

 

Power 
SHC 

 
 

 
-0.0483 
(0.894) 

 
-0.0389 
(0.891) 

 
0.0036 
(0.994) 

 
-0.0160 
(0.945) 

 
-0.1138 
(0.788) 

 
-0.0720 
(0.837) 

 
-0.5080 
(0.243) 

 
-0.5188 
(0.220) 

 
-0.0599 
(0.810) 

 
-0.0879 
(0.795) 

 
-0.0726 
(0.828) 

 
-0.4987 
(0.220) 

Recur 
NDC 

  
 

 
0.0094 
(0.974) 

 
0.0519 
(0.931) 

 
0.0323 
(0.930) 

 
-0.0655 
(0.810) 

 
-0.0237 
(0.945) 

 
-0.4597 
(0.306) 

 
-0.4705 
(0.278) 

 
-0.0116 
(0.969) 

 
-0.0396 
(0.903) 

 
-0.0243 
(0.945) 

 
-0.4504 
(0.286) 

Recur 
SHC 

    
0.0424 
(0.923) 

 
0.0228 
(0.897) 

 
-0.0749 
(0.788) 

 
-0.0332 
(0.841) 

 
-0.4692 
(0.119) 

 
-0.4800 
(0.089) 

 
-0.0210 
(0.767) 

 
-0.0490 
(0.704) 

 
-0.0338 
(0.840) 

 
-0.4598 
(0.082) 

 

Habit  
NDC 

     
-0.0196 
(0.964) 

 
-0.1174 
(0.836) 

 
-0.0756 
(0.866) 

 
-0.5116 
(0.325) 

 
-0.5224 
(0.306) 

 
-0.0634 
(0.882) 

 
-0.0914 
(0.837) 

 
-0.0762 
(0.857) 

 

 
-0.5022 
(0.327) 

Habit  
SHC 

      
-0.0978 
(0.784) 

 
-0.0560 
(0.794 

 
-0.4920 
(0.153) 

 
-0.5028 
(0.126) 

 
-0.438 
(0.815) 

 
-0.0718 
(0.748) 

 
-0.0566 
(0.809) 

 

 
-0.4827 
(0.117) 

Recur 
sVRPm 
NDC 

       
0.0418 
(0.863) 

 
-0.3942 
(0.233) 

 
-0.4050 
(0.200) 

 
0.0539 
(0.851) 

 
0.0259 
(0.923) 

 
0.0412 
(0.865) 

 

 
-0.3849 
(0.212) 

Recur 
sVRPm 
SHC 

        
-0.4360 
(0.064) 

 
-0.4468 
(0.036) 

 
0.0122 
(0.949) 

 
-0.0158 
(0.923) 

 
-0.0006 
(0.995) 

 

 
-0.4266 
(0.039) 

sVRPm 

+DEF 
+HML  

         
-0.0108 
(0.744) 

 
0.4482 
(0.150) 

 
0.4202 
(0.110) 

 
0.4354 
(0.070) 

 

 
0.0093 
(0.941) 

sVRPm 

+DEF 
+HML 
+Rm 

          
0.4590 
(0.117 

 
0.4310 
(0.076) 

 
0.4462 
(0.043) 

 

 
0.0202 
(0.860) 

 

CAPM 

           
-0.0280 
(0.845) 

 
-0.0128 
(0.938) 

 
-0.4388 
(0.111) 

 

Rm+Rm
2 

            
0.0152 
(0.926) 

 
-0.4108 
(0.070) 

sVRPm 

             
-0.4108 
(0.044) 

This table presents the results of pairwise tests of equality of the OLS two-pass cross-sectional R2 values for alternative asset pricing models. We report the difference 

between the sample cross-sectional R2 values of the models in row i and column j, 2
j

2
i R̂R̂ − , and the associated p-values in parentheses for the test of 2

j
2
i0 R̂R̂:H = . 

The p-values are computed under the assumption that the models are potentially misspecified. 
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Table 9 
Portfolio Return and Volatility Risk Premium Sensitivities to the Default Premium  

and Financial Stress, January 1996 to February 2011 

sVRP Beta-Sorted 
Portfolios 

Portfolio Return 
Default Betas with 

Market in the 
Regression 

Portfolio Return 
Financial Stress Betas 

with Market in the 
Regression 

Portfolio sVRP 
Financial Stress Betas 

P1B 1.571 
(2.00) 

0.011 
(1.61) 

-0.0018 
(-0.49) 

P2B 1.208 
(2.82) 

0.012 
(3.25) 

-0.0021 
(-1.17) 

P3B 0.973 
(2.15) 

0.011 
(2.92) 

-0.0024 
(-1.50) 

P4B 0.521 
(1.43) 

0.006 
(1.93) 

-0.0012 
(-0.85) 

P5B 1.144 
(3.34) 

0.008 
(2.66) 

-0.0002 
(-0.15) 

P6B 0.273 
(0.80) 

0.003 
(1.02) 

-0.0005 
(-0.40) 

P7B 0.587 
(1.85) 

0.005 
(1.72) 

-0.0011 
(-0.82) 

P8B 0.612 
(1.90) 

0.004 
(1.58) 

-0.0013 
(-0.99) 

P9B 0.801 
(2.51) 

0.006 
(2.29) 

0.0013 
(0.94) 

P10B 0.077 
(0.26) 

0.004 
(1.45) 

0.0008 
(0.50) 

P11B 0.320 
(0.98) 

0.002 
(0.78) 

0.0003 
(0.22) 

P12B -0.174 
(-0.52) 

-0.001 
(-0.24) 

0.0013 
(0.76) 

P13B -0.495 
(-1.57) 

-0.003 
(-0.92) 

0.0004 
(0.22) 

P14B -0.164 
(-0.52) 

-0.002 
(-0.59) 

0.0037 
(1.87) 

P15B -0.046 
(-0.16) 

-0.001 
(-0.50) 

0.0039 
(1.84) 

P16B -0.192 
(-0.57) 

-0.001 
(-0.30) 

0.0046 
(1.96) 

P17B -0.536 
(-1.60) 

-0.004 
(-1.31) 

0.0060 
(2.20) 

P18B -0.160 
(-0.45) 

-0.001 
(-0.16) 

0.0056 
(1.73) 

P19B -0.720 
(-2.06) 

-0.006 
(-2.12) 

0.0098 
(2.61) 

P20B -0.999 
(-2.02) 

-0.007 
(-1.97) 

0.0172 
(2.91) 

This table employs the returns of the underlying components of the 20 sVRP beta-sorted portfolios to estimate the default and 
financial stress betas controlling for market returns. The first column reports the return betas with respect to the default premium 
and the second column reports the betas with respect to the St. Louis Fed Financial Stress Index (STLFSI). The STLFSI measures 
the degree of financial stress in the markets where increasing values of the index represents higher financial stress risk. The last 
column displays the sVRP betas of the 20 sVRP beta-sorted portfolios with respect to STLFSI. 
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Table 10 
Beta against Beta Portfolio from the Volatility Risk Premia 

Long Low Beta and Short High Beta Portfolio Returns from the Underlying Components of the 20 Risk 
Premia Volatility Beta-Sorted Portfolios, January 1996 to February 2011 

BAB 
(sVRP) 

CAPM 
Fama-
French 

Fama-
French        
+ MOM 

Fama-
French        
+ MOM      
+ LIQ 

Excess 
Market 
Return        
+ TED 

Excess 
Market 
Return        

+ Default 

Alpha 
 

0.004648 
(2.454) 

 
0.004363 
(2.285) 

 
0.004626 
(2.403) 

 
0.004643 
(2.403) 

 
0.002182 
(0.868) 

 
-0.003654 
(-1.018) 

Adj R2 
 

0.270 
 

0.275 0.275 0.271 0.274 0.281 

We show the results from the estimation of the OLS time-series regressions for a BAB portfolio constructed from our sample data 
,which is a portfolio of long levered low-beta stocks, and short de-levered high-beta securities. We report the estimated alphas for 
alternative factor asset pricing models. In this table, TED is a measure of funding liquidity proxied by the spread between Treasury 

bill rate and the euro-dollar LIBOR rate. Fama-French is the three-factor model, MOM is the momentum factor, and DEF is the 
default premium. 
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Figure 1 

Volatility Risk Premia for Extreme and Intermediate sVRP  Beta-Sorted 
Portfolios and the Market: January 1996-February 2011
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This figure displays the temporal behavior of the representative volatility risk premium beta-sorted portfolios and the market 
volatility risk premium. 
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Figure 2 

Risk Aversion Changes and Market Volatiliy Risk Premium
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This figure displays the market volatility risk premium and time-varying risk aversion estimated under the habit preference model 
with a curvature parameter estimated simultaneously with the pricing model and the surplus consumption equation.  
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Figure 3 

Average Returns versus Average Returns from the Estimated Parameters of the Fama–MacBeth Two-
Pass Cross-Sectional Regression, Volatility Risk Premium Beta-Sorted Portfolios 
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Panel A: Power utility. 

 
 

The Cross-Section of Volatility Risk Premia with Habit and 
Aggregate Consumption Growth 
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Panel B: Habit preferences with time-varying risk aversion. 
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The Cross-Section of Volatility Risk Premia with Recursive 
Preferences and Market Volatility Risk Premium: 1996-

2011
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Panel C: Recursive preferences with aggregate consumption growth and market wealth. 

 
 

 

The Cross-Section of Volatility Risk Premia with Linear SDF 
with Market Volatility Risk Premium and Default 1996-2011
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Panel D: Linear SDF with market volatility risk premium and the default premium. 

 


