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The aim of this paper is to relate the shale oil revolution in the United States with WTI 
oil price behavior. Since the development of the combination of horizontal drilling 
techniques together with hydraulic fracturing in the 1970s, known as shale oil, oil 
markets have undergone a significant transformation with the unexpectedly strong rise 
in the United States production affecting oil prices. The goal of this paper is two-fold: 
first, we analyze the relationship of total United States crude oil production and WTI 
crude oil prices by studying its performance in the time-frequency domain applying 
wavelet tools for its resolution. Using wavelet methodologies, we observe a shift to 
higher frequencies of the wavelet coherency for the time period 2003-2009 and lower 
frequencies for the period 2009-2014. The results also indicate that during the period 
2003-2009 the U.S. oil production and WTI oil prices time series are in phase; they 
move together, with total United States oil production leading. During the period 2009-
2014 oil production and WTI oil prices time series are out of phase (negatively 
correlated), suggesting that oil production increases precede a decrease in WTI oil 
prices. In the second part of the paper and to give greater credibility to the results 
obtained through the wavelet transform, we analyze the behavior of WTI crude oil 
before and after the shale oil boom in the United States employing methodologies based 
on long run dependence. The results indicate that mean reversion takes place only for 
the data corresponding to the first subsample, ending at 2003. For the second 
subsample, as well as for the whole sample, lack of mean reversion is detected with 
orders of integration equal to or higher than 1 in all cases. 
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1. Introduction 

The production of shale oil1 consists in horizontal drilling and the hydraulic fracturing 

of underground rock formations containing deposits of crude oil that are trapped within 

the rock. This process is used to extract crude oil that would be impossible to release 

through conventional drilling methods.  

The boom production of shale oil in United States is an example of a technological 

change in a single industry in one country affecting international trade worldwide.  

The evolution of United States oil production was in decline until the early 1970s. 

This trend was only briefly reversed by the development of the Alaskan oil fields in the 

late 1970s. According to Kilian (2016a), the expansion of United States shale oil takes 

place between 2003 and 2013 stimulated by high conventional crude oil prices resulting 

in this technology becoming competitive. According to Clements and Cummings (2016) 

the global oil market witnessed a period of stable and high prices with crude averaging 

over USD 110bbl between 2011 and mid-2014. During this period, there were 

geopolitical turbulences in Libya, Iraq and Iran that led to reduced exports, creating a 

market supply shortage. United States tight oil reduced the gap thanks to technological 

advances in horizontal funding techniques which were funded by high oil prices and 

low financing costs through credits. November 2008 was the reversal date of this trend 

in the United States. It can be shown that this reversal is largely due to U.S. fracking. 

Figure 1 plots the crude oil production at the Bakken, Eagle Ford, Haynesville, 

Marcellus, Niobrara, Permian and Uttica shale oil plays. According to the Energy 

Information Administration report (May 2016), the seven regions previously mentioned 

account for 92% of domestic shale oil production growth in United States. 

																																																								
1 According to Mănescu and Nuño (2015) the definition provided by the Energy Information 
Administration (EIA) and the International Energy Agency (IEA) is that shale oil is the “tight oil” or 
“light, tight oil”. The term tight oil does not have a specific technical, scientific, or geologic definition. 
Tight oil refers to oil produced from very low-permeability shale, sandstone, and carbonate formations.  



[Insert Figure 1 about here] 

Figure 2 plots the crude oil production at the Bakken, Eagle Ford, Haynesville, 

Marcellus, Niobrara, Permian and Uttica shale oil and the WTI crude oil price 

behaviour during the period 2007-2016. 

[Insert Figure 2 about here] 

Following Kilian (2016a), the production of shale oil increased exponentially until 

growth became linear. In March 2014 the United States economy produced on average 

8.2 millions of barrels/day (mbd) and imported 7.3 mbd. Of the total 15.5 mbd of crude 

oil, 3.6 mbd were produced from shale oil, accounting for half of the United States oil 

production and only a quarter of the total quantity of oil has been used by the United 

States economy.  

Kilian (2016b) argues that the increase of shale oil production in the United States 

has displaced the Arab oil producing countries and their crude oil exports. This fact has 

occurred because United States refineries have increasingly exported refined products 

such as gasoline or diesel made from domestically produced crude oil. 

The high oil prices in recent years made shale oil exploration economically viable. 

However, there were several factors which ensured that the shale oil revolution took 

place in the United States and not elsewhere. According to Alquist and Guenétte, (2014) 

there was a history of shale gas exploitation, legal incentives for land owners and an 

advanced oil production infrastructure. In the early 19th century, the technology 

necessary for shale oil exploration started to be developed and was perfected during the 

1980s. Also, the United States has legal and institutional features that make the 

economic environment attractive for the extraction of unconventional oil, and have 

infrastructures that consist of a large number of state-of-the-art drilling rigs, an 

extensive pipeline network, and associated refineries. 



According to Covert (2014) and related to the flow of shale oil, there is evidence of 

significant productivity gains in fracking that could further lower the cost of recovering 

shale oil and raise future estimates of recoverable shale oil.  

From a different perspective, Sharenow and Worah (2013) showed that shale oil 

could provide a rebalancing global supply. The United States shale and eventually shale 

production globally, combined with production from Canada's oil sands, could 

potentially increase energy balances for the first time since the oil spikes of the 1970s, 

leading to the development of new reserve basins. Killian (2016a) argues that this has 

implications for the price of oil because the United States oil industry has been able to 

blend heavy crudes and shale oil in the right proportion to imitate mid-grade crude oil of 

type traditionally imported and refined along the Gulf Coast.  

[Insert Figure 3 about here] 

Figure 3 illustrates the total United States oil production and the behaviour of WTI 

crude oil prices. 

It is common in the literature to utilize Fourier analysis to analyse the different 

relations at different frequencies, omitting the time information, despite it being difficult 

to identify structural changes with this type of analysis. In this paper we analyse the 

relationship of total United States oil production and WTI crude oil prices by studying 

its dynamic in the time-frequency domain through the application of wavelet tools for 

its resolution. To complement this and to give further credibility to the results obtained 

by the wavelet transform, we analyse the behaviour of WTI crude oil before and after 

the shale oil boom in the United States, employing methodologies based on long run 

dependence or long memory using the date break cited by the literature and by our 

wavelets results. In addition, we employ the methodology suggested in Gil-Alana 

(2008) to estimate breaks in the context of fractional integration.  



Under the hypothesis that shale oil production affects WTI oil prices and according 

to Kilian (2016a) the evolution of the United States oil price is determined by the 

increases in shale oil production. The development of the United States refining, 

pipeline and rail infrastructure are important to understand and forecast the evolution of 

the domestic price of oil in the United States. There are others factors that Baumeister 

and Kilian (2016) mentioned such as oil supply shocks, demand shocks and shocks to 

oil price expectations. In this research we use the variables related with crude oil 

production in United States and WTI crude oil prices because we want to study how the 

overproduction related with the shale oil affects WTI behaviour.  

The contributions of the paper are twofold. First, we use a methodology based on a 

time-frequency technique that it is able to analyse the evolution of the different 

frequency components of the time series over time. Applying the wavelet transform it is 

possible to detect the evolution in time of the low frequency. This low frequency is 

related with the trend or long run component in the time series. Also, applying the 

wavelet transform we can detect the evolution over time of the high frequency 

components related to seasonality or the short run component, as well as the rapid 

changes in the time series2. We use wavelets to analyse the relationship between WTI 

oil prices and total oil production in the U.S. for the time period 2000-2016. Following 

Aguiar-Conraria and Soares (2011a,b), two tools are used to analyse the impact of crude 

oil production on the crude oil prices: the wavelet coherency and the wavelet phase-

difference. The wavelet coherence is a localized correlation coefficient in the time-

frequency space. The information on the delay between the oscillations of two time-

series is the phase-difference. These concepts developed by Aguiar Conraria were 

previously examined in Naccache (2011), analysing the relationship between oil price 

																																																								
2 Hogan and Lakey (2005) examined the relationship between time-frequency and time-scale (wavelets) 
methods. 



and the economy. The analysis is performed in the time-frequency domain, using 

wavelet analysis. Following these authors, we use this methodology for three reasons. 

First, stationarity is not required in the wavelet analysis (in our case, oil prices are non-

stationary). On the other hand, we can study how relations evolve between time and 

frequencies. And the last reason is related with the energy markets and the research by 

Kyrtsos et al. (2009). They argue that several energy markets display consistent non-

linear dependencies. Second, in this paper we use some recently developed methods 

based on the concepts of long run dependence and long memory using fractional 

integration techniques (Gil-Alana and Hualde, 2009). The methodology used in the 

second part of the research is similar to the one applied in Monge et al. (2016). 

Fractional integration is more general than the standard methods that use exclusively 

integer orders of differentiation (i.e., AR(I)MA). 

The rest of the paper is structured as follows. Section 2 reviews the oil supply and 

the implications on the WTI crude oil price behaviour in the U.S.. Section 3 presents the 

methodology applied in the paper. In Section 4 we discuss the main empirical results, 

while Section 5 concludes. 

 

2. Is the shale oil supply behind the behaviour of WTI crude oil prices? 

In the last decade, global oil markets have enjoyed a greater supply due to non-

conventional sources of oil production in the United States and the Canadian Oil Sands 

combined with the production of biofuels. 

According to the Bank of Canada (2015), if shale oil production were one-third of 

current oil production and the expected increase in global shale oil production were able 

to reach two-thirds of oil production, this increase could become uneconomical. In line 



with Benes et al. (2015), the cost of non-conventional oil production is likely to decline 

as new technologies will reduce the cost exploration and extraction. 

Baumeister and Kilian (2016) basing their study on an alternative methodology, 

were unable to pin down the quantitative role of fracking. In their research they provide 

a strong evidence that a slowdown in the global demand for oil was a major contributor 

to this specific oil price decline, along with shocks to global oil production and oil price 

expectations. 

Baffes et al. (2015) mentioned that the "unconventional" U.S. oil production differs 

from conventional ones, because they have a shorter life-cycle, around 2.5 - 3 years 

from the start until full extraction. Krane and Agerton (2015) and McCracken (2015) 

argue that oil supply from these sources tends to be more elastic to price changes than 

from conventional sources, even in the short term. 

Another important factor mentioned by Baffes et al. (2015) is that OPEC does not 

have a legal clause on how to intervene when market conditions warrant, thus, allowing 

it to respond flexibly to changing circumstances. Also, these authors mentioned that 

changes in supply are due to the expansion of oil production in the United States, 

causing concerns regarding about supply disruptions to almost disappear. Furthermore, 

OPEC's policy has played a dominant role in explaining how the recent plunge in prices 

has been due to supply shocks. 

To give consistency to this explanation, Arezki and Blanchard (2015) documented 

that demand related factors only contribute to 20-30 percent of the decline and the 

supply related factors, and OPEC's decision not to cut supplies were more important in 

driving the fall in oil prices. Also, Hamilton (2014) explains that only two-fifths of the 

decline in oil prices in the second half of 2014 was due to weak global demand. 

Baumeister and Kilian (2016) conclude in their research report that more than half of 



the oil price decline reflects the cumulative effects of earlier oil supply and demand 

shocks and, among the remaining half, the most influential shock was associated with 

the weakening global economy while positive oil supply shocks were limited between 

June and December 2014. 

 

3. Methodology 

3.1 Wavelet analysis 

The wavelet transform offers localized frequency decomposition, providing information 

about frequency components. Wavelets have significant advantages over basic Fourier 

analysis when the series under study is stationary – see Gençay et al., (2002), Percival 

and Walden (2000) and Ramsey (2002). In our research, we use continuous wavelet 

analysis tools, mainly wavelet coherence, measuring the degree of local correlation 

between two-time series in the time-frequency domain, and the wavelet coherence 

phase differences.  

 

3.1.1 The continuous wavelet transform 

The continuous wavelet transform of a time series 𝑥(𝑡), with respect to the wavelet ψ, 

is a function WTx (a, τ) defined as: 

𝑊𝑇( 𝑎, 𝜏 = 𝑥(𝑡)𝜓.,/∗ (𝑡)𝑑𝑡23
43 ,   (1) 

where 𝑊𝑇( 𝑎, 𝜏 	are the wavelet coefficients of 𝑥 𝑡  at a certain scale a and a shift t, 

where, 

              𝜓.,/∗ = 6
.
𝜓∗ 74/

.
     (2) 

is the complex conjugate of the wavelet function ψ. The parameter a is a scaling factor 

that controls the stretching factor of the wavelet and τ is a location parameter in time. 

Then, 𝑊𝑇( 𝑎, 𝜏 	 will be a matrix of time series. The scaling factor a is a positive real 



number that simply means stretching it (if a > 1), or compressing it (if a < 1). If a is 

positive, we assume that we are using an analytic or progressive wavelet, i.e., its Fourier 

transform is defined by the positive frequency axis, Ψ 𝜔 = 0 when 𝜔 < 0.  

The lower the value of the scaling factor, the more higher frequency components are 

reflected in the continuous wavelet transform, thus we are dealing with the short-run 

components of the signal. As the scaling factor increases, we are dealing with lower 

frequency components of the time series, focussing on the long-run components. Then, 

the continuous wavelet transform is a multidimensional transform; from one-time series 

we obtain a matrix of time series that show different frequency components (depending 

on the scaling factor) of the original one. 

If the wavelet function ψ is complex, then the wavelet transform 𝑊𝑇( 𝑎, 𝜏  will 

also be complex, with amplitude, 𝑊𝑇( 𝑎, 𝜏 , and phase, 𝜙( 𝑎, 𝜏 . The real part of the 

wavelet transform, ℜe 𝑊𝑇( , and its imaginary part, ℑm 𝑊𝑇(  define the phase or 

phase-angle of the wavelet transform: 

              𝜙( = Arctan ℑG HIJ 	
ℜK HIJ 	

.    (3) 

The phase of a given time-series 𝑥(𝑡) is measured in radians, ranging from 

−π/2 to +π/2. Then, the phase is also a matrix containing the angle of each frequency 

component of the original time series. The phase will be used to extract conclusions of 

the synchronism between two time series, applying the wavelet coherency and the phase 

difference between time series (Aguiar-Conraria and Soares, 2011a,b and 2014).  

The wavelet or mother wavelet used to analyze the time series must satisfy 

certain technical conditions to provide effective time-frequency location properties 

(Daubechies, 1992). First, it has to be a function of finite energy, 𝜓 𝑡 𝑑𝑡 = 023
43 . 

There are many different wavelet families, but the election of a certain wavelet will 

depend on the application itself. 



Related to time localization properties, we can normalize the wavelet function so 

that 𝜓 𝑡 Q𝑑𝑡 = 123
43 . 𝜓 𝑡 Q defines a probability density function, and therefore we 

can obtain the mean, 𝜇T, and the standard deviation, 𝜎T, of this distribution. They are 

called the center and the radius of the wavelet, respectively. If we consider the Fourier 

transform of the mother wavelet, Ψ 𝜔 , in a similar way we can calculate its mean and 

standard deviation, 𝜇V and 𝜎V. 

These quantities define the Heisenberg box in the time-frequency plane: 

𝜇T − 𝜎T, 𝜇T + 𝜎T × 𝜇V − 𝜎V, 𝜇V − 𝜎V . We say that ψ is localized around the point 

𝜇T, 𝜇V 	of the time–frequency plane with an uncertainty given by 𝜎T𝜎V. In our 

context, the Heisenberg’s uncertainty principle establishes that 𝜎T𝜎V ≥ 1/2. 

The Morlet wavelet, 

             𝜓 𝑡 = 𝜋4
Z
[𝑒]^_7𝑒47`/Q   (4) 

is a complex valued wavelet, so we will be able to measure the synchronism between 

two-time series. This wavelet has optimal time–frequency concentration, in the sense 

that 𝜎T𝜎V = 1/2. Therefore, using this wavelet, we have the optimum trade off 

between time and frequency resolution. On the other hand, the Morlet can be considered 

as a wavelet (with finite energy, defined as before) when the frequency parameter ω0 = 

6. For this value of the Morlet wavelet, the wavelet scale, a, satisfies the inverse relation 

f ≈ 1/a, as the rest of the most used mother wavelets. 

 

3.1.2 Wavelet and cross wavelet power spectrum, and wavelet coherency 

The wavelet power spectrum (WPS) or the scalogram of a time series 𝑥(𝑡), as it is 

called, is the squared amplitude of the wavelet transform, that is: 𝑊𝑃𝑆( 𝑎, 𝜏 =

𝑊𝑇( 𝑎, 𝜏 Q. The wavelet power spectrum lets us know the distribution of the energy 



(spectral density) of a time-series across the two-dimensional time–frequency 

representation. 

While the wavelet power spectrum shows the variance of a time-series in the 

time-frequency plane, the cross wavelet power spectrum (CWPS) of two time-series 

𝑥(𝑡) and 𝑦(𝑡) shows the covariance between these time series in the time-frequency 

plane: 

          𝐶𝑊𝑃𝑆(e 𝑎, 𝜏 = 𝑊𝑇( 𝑎, 𝜏 𝑊𝑇e 𝑎, 𝜏 ∗  ,  (5) 

where * represents the complex conjugate, as before. 

Therefore, the complex wavelet coherency between two time series 𝑥(𝑡) and 𝑦(𝑡) 

is defined as the ratio of the cross-spectrum and the product of the power spectrum of 

both series:  

𝑊𝐶𝑂(e =
gh HIJ .,/ HIi .,/ ∗

gh HIJ .,/ ` gh HIi .,/ `
,  (6) 

where SO is a smoothing operator in both time and scale. Without the smoothing 

operator, the wavelet coherency would be always one for all times and scales (see 

Aguiar-Conraria et al. (2008) for details). 

As the 𝑊𝐶𝑂(e is a matrix of complex time series, we can split it again into 

amplitude and phase, 𝑊𝐶𝑂(e = 𝑊𝐶𝑂(e 𝑒]jJi. The amplitude matrix is the wavelet 

coherency, 𝑊𝐶(e and the angle 𝜙(e is called the phase difference between both time 

series: 

           𝜙(e = Arctan ℑG HkhJi 	
ℜK HkhJi 	

,   (7) 

𝜙(e is the phase difference between time series 𝑥(𝑡) and 𝑦(𝑡), and tells us about the 

synchronism between those time series. 𝜙(e ranging from −π to π. 

On the one hand, if 𝜙(e = 0 then both time series move in phase. This will mean 

that both time series increase or decrease their values at the same time. If 



𝜙(e𝜖 − m
Q
, 0 , they move in phase but the time series 𝑥(𝑡) is leading; if 𝜙(e𝜖 0, m

Q
, 

the time series 𝑦(𝑡) is leading. Therefore, in these cases we can find that one time series 

anticipates the increase or decrease of the other one. On the other hand, a phase 

difference of π or – π indicates an anti-phase relation, when one time series increases, 

the other one is decreasing in time. Finally, if 𝜙(e𝜖 − m
Q
, −𝜋 , both time series are out 

of phase but 𝑥(𝑡) is leading; if 𝜙(e𝜖
m
Q
, 𝜋 , 𝑦(𝑡) is leading. In this case this means that 

one time series has a time delay with respect to the other. 

 

3.1.3 Significance tests, Monte Carlo simulations 

To check the statistical significance of the wavelet coherency, 𝑊𝐶(e, we rely on 

Monte Carlo simulations (Schreiber and Schmitz, 1996). We model each time series as 

an ARMA (p, q) process where 𝑝 = 𝑞 = 1, with no pre-conditions. Then we assess the 

statistical significance of the amplitude, not of the phase. The phase difference is not 

tested as there is no agreement in the scientific community about how to define the 

procedure. We should only take into account the phase difference when the amplitude 

of the wavelet coherency is statistically significant. 

 

3.2 Fractional integration 

We will also use techniques based on the concept of fractional integration, which 

means that number of differences required to render a series I(0) stationary may be a 

fractional value rather than an integer. A given time series X(t), t = 1,2… is said to 

follow an integrated of order d process (and denoted as X(t) ≈ I(d)) if 

 

1 − 𝐿 r𝑋(𝑡) = 	𝑈(𝑡),      t = 1, 2, …,         (8) 



where d can be any real value, L is the lag-operator (LX(t) = X(t-1)) and U(t) is I(0), 

defined for our purposes as a covariance stationary process with a spectral density 

function that is positive and finite at the zero frequency. Thus, U(t) may display some 

type of time dependence of the weak form, i.e., the type of an AutoRegressive Moving 

Average (ARMA) form such that, for example, if U(t) is ARMA (p, q), X(t) is said to be 

ARFIMA (p, d, q). 

Based on the specification in (8) different features can be observed depending on 

the value of d. Thus, if d = 0 in (8), X(t) = U(t) and the process is said to be short 

memory or I(0). In this case, if U(t) is ARMA, the autocorrelations decay exponentially 

fast. On the other hand, if d > 0 the process is said to be long memory, so-named due to 

the high degree of association between observations which are far distant in time. In this 

context, if d < 0.5 the process is still covariance stationary and the autocorrelations 

decay hyperbolically fast. As long as d is smaller than 1, the process is mean reverting 

with shocks disappearing in the long run, contrary to what happens with d ≥ 1 where 

shocks are expected to be permanent, i.e. lasting forever. 

We estimate the fractional differencing parameter d by means of both parametric 

and semiparametric techniques. In the parametric approach, we use the Whittle function 

in the frequency domain (Dahlhaus, 1989), while in the semiparametric case, we use a 

Gaussian semiparametric method that also uses the Whittle function on a band of 

frequencies that degenerates to zero (Robinson, 1995).  

Also, based on the fact that long memory may be produced by the existence of 

breaks that have not been taken into account, we also conduct the methodology 

proposed in Gil-Alana (2008) that allows for breaks still in the context of fractional 

integration. In doing so, we provide evidence of a break at the end of 2003, which is 

consistent with Kilian (2016a), where he identifies that the expansion of United States 



shale oil starts after 2003 stimulated by the high prices of conventional crude oil, 

thereby making this technology competitive. 

 

4. Empirical results 

4.1 Data 

The data examined in this work correspond to U.S. Crude Oil Production and WTI 

crude oil prices in the United States over the period 2000:01- 2016:03. The WTI crude 

oil prices data was obtained from the Federal Reserve Bank of St. Louis.3 The database 

was in nominal prices (dollars as currency units), and we have deflated to real prices. 

We have used the Producer Price Index for All Commodities from the Federal Reserve 

Bank of St. Louis.4 The base year to obtain the new crude oil prices is 2011. 

Furthermore, we used monthly data of the U.S. Crude Oil Production (thousands 

barrels per day) over the period 2000:01- 2016:03 obtained from DataStream Database.  

 

4.2  Empirical results 

We first estimate the wavelet coherency between the monthly quantity of total U.S. oil 

production and the WTI crude oil prices. We rely on Monte Carlo simulations to test if 

the similitude of the wavelet coherency is statistically significant. We compute the 

complex wavelet coherence matrices between a surrogate for WTI crude oil prices and a 

surrogate for the total crude oil production. We do 1000 simulations modelling both 

time series as an ARMA (p, q) process, with no pre-conditions on p and q, with 𝑝 =

𝑞 = 1.   

																																																								
3 Spot Oil Price: West Texas Intermediate, retrieved from FRED, Federal Reserve Bank of St. Louis. 
https://research.stlouisfed.org/fred2/series/OILPRICE/. 
4 US. Bureau of Labor Statistics, Producer Price Index for All Commodities, retrieved from FRED, 
Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/PPIACO/. 



We estimate the wavelet coherency for frequencies corresponding to periods 

between 1.5 to 4 and 4.5 to 8 years.  

[Insert Figure 4 about here] 

In Figure 4 we display the empirical results. On the left panel (a) we have the 

wavelet coherency between oil production and WTI crude oil prices.5 On the right hand 

side, we have the phase-differences: on the top (b) we have the phase-difference in the 

1.5 - 4 year frequency band; at the bottom (c), we have the phase-difference in the 4.5 - 

8 year frequency band. The regions surrounded by the black contour are the high 

coherency regions with significant values at 5%.  

Analysing the wavelet coherency between oil production and WTI crude oil 

prices, we appreciate that the regions with higher coherency are between 2003 and 2014 

corresponding to the wavelet scales of periods from the 1.5 to 7 year band. We focus 

our phase difference analysis on two frequency bands: 1.5 - 4 and 4.5 - 8 years. 

To analyse the wavelet coherency graph, we have to focus on the regions of high 

coherency of the chart. In those regions we can observe the phase difference of the 

frequency band to extract some conclusions.  

In the 1.5 - 4 year band, we identify a region of high coherency between 2003 and 

2009, in the frequency bands between 2.5 and 3.5 years with a corresponding phase 

difference in this band between 0 and p/2. This result suggests that U.S. oil production 

and WTI oil prices time series are in phase, they move together, with total oil 

production leading.  

We can find also a region of high coherency between 2009 to 2014 in the 4.5 - 8 

year band, specifically between the 5 and 6 year frequency bands. The phase difference 

of that period stays between -p/2 and -p, suggesting that U.S. oil production and WTI 

																																																								
5	Coherency ranges from blue (low coherency) to red (high coherency). The cone of influence is shown 
with a thick line, which is the region subject to border distortions.	



oil prices time series are out of phase (negative correlated) with oil production oil 

leading. This suggests that the oil production increases precede a decrease on WTI oil 

prices. This coincides with Kilian (2016a) in the sense that the evolution of the U.S. 

price of oil is determined by increases in shale oil production. 

From this wavelet coherency figure, we can observe a change across time in the 

common frequency bands between crude oil production and WTI; higher frequencies 

between the years 2003 and 2009 suggest that the influence in this period of time is a 

short-term relationship, reaching a maximum at the 3 year frequency band. This means 

that the crude oil production influence WTI oil prices faster that in preceding years. On 

the other hand, the relationship of both time series in the 2009 to 2014 period had a long 

term component, i.e., a lower frequency band of approximately between 5 to 6 years, 

suggesting a longer term impact of the crude oil production over the WTI crude oil 

prices. 

Next we move to the long memory part of the paper, and taking into account that 

some authors argue that fractional integration (and even long memory, in a more 

general context) can be a spurious phenomenon caused by the presence of a structural 

break that had not been taken into account (Diebold and Inoue, 2001; Granger and 

Hyung, 2004) we perform first the approach suggested in Gil-Alana (2008), finding 

evidence in favour of a break at December 2003. Thus, we separate the whole dataset in 

two different subsamples, one from January 2000 to December 2003, and the second 

from January 2004 until the end of the sample. This is in line with the research 

conducted in Kilian (2016a) where he identifies that the expansion of U.S. shale oil 

starts after 2003 stimulated by high conventional crude oil prices, resulting in this 

technology becoming competitive. 



 Using fractional integration methods the results are presented across Tables 1 - 

5. Tables 1 and 2 focus on a parametric approach, and the model considered is 

𝑦 𝑡 = 	𝛽v + 𝛽6𝑡 + 𝑋 𝑡 ;				 1 − 𝐿 r𝑋 𝑡 = 	𝑈 𝑡 ,			𝑡 = 1,2, …,	       (9) 

Under the assumption of white noise errors (in Table 1) and Bloomfield’s (1973) 

autocorrelated disturbances (in Table 2). The latter is a non-parametric approach of 

modeling I(0) processes that produce autocorrelations decaying exponentially as in the 

ARMA case. In both cases, we display the results of the estimates of d for the three 

standard cases examined in the literature of i) no deterministic terms (β0 = β1 = 0 a 

priori in (9)), ii) an intercept (β0 unknown and β1 = 0 a priori) and iii) an intercept with a 

linear trend (β0 and β1 unknown).  We present the results for the two subsamples along 

with those corresponding to the whole dataset. 

 Starting with the results based on white noise errors (Table 1), we observe that 

in both cases of prices and production, the results for the whole sample are very similar 

to those corresponding to the second subsample; thus, for prices, the estimate of d is 

1.25 for the whole sample and 1.28 for the data starting in 2004, and in both cases the 

unit root null hypothesis is rejected in favor of d > 1; however, for the data 

corresponding to the first subsample, the estimated value of d is about 0.81 and the unit 

root null cannot be rejected. Focusing now on production, the estimates of d are smaller 

than 1 in the three cases and the unit root null cannot be rejected in any of the three 

cases, however, once more, lower values are obtained for the data in the first subsample. 

[Insert Tables 1 and 2 about here] 

 Looking now at the results based on autocorrelated errors, the values are 

substantially smaller, especially for those corresponding to the first subsample, but they 

are consistent with those presented above for the case of white noise errors, with lower 

degrees of integration during the first subsample. In fact, for prices, the estimate of d in 



the first subsample is found to be 0.39, and the hypothesis of mean reversion (d < 1) 

cannot be rejected in this case, although it is rejected in the second subsample and for 

the whole dataset. For production, the same result holds, and the estimate of d for the 

first subsample is even smaller (0.10) being close to 1 for the second subsample and the 

whole dataset. 

 Due to the disparity of the results depending on the specification of the error term, 

we also conduct the analysis with a semiparametric approach, where no functional form 

is imposed on the I(0) error term U(t). 

 Table 3 displays the results for the whole sample. We observe that the unit root is 

almost never rejected for prices, this hypothesis being rejected in favor of d > 1 for 

production with all bandwidth numbers.6 

[Insert Tables 3 – 5 about here] 

 Table 4 focuses on the first subsample and here, evidence of mean reversion (d < 

1) is obtained in many cases for prices and in all cases for production. Very different 

results are obtained in the results corresponding to the second subsample, support being 

found for the unit root or even d > 1 in the majority of the cases. 

 For the first subsample we conclude that there was a shock in the crude oil 

production and price will recover by itself over time with no need for a strong policy 

measures since the series will tend to revert to its trend sometime in the future. This 

behavior, however, is not observed with the data starting at 2004 or when the whole 

dataset is used. For these cases, shocks will have permanent effects and strong policy 

measures must be adopted to recover the original trends. 

 

																																																								
6 We use a selected group of bandwidth numbers. The choice of the bandwidth clearly shows the trade-off 
between bias and variance: the asymptotic variance is decreasing with m while the bias is growing with 
m. 
	



5. Concluding Remarks 

In this research, we have analyzed the shale oil revolution and its effects on WTI 

oil price behavior. Since the development of the combination of horizontal drilling 

techniques together with hydraulic fracturing, known as shale oil, in the 1970s, , oil 

markets have undergone a significant transformation with the unexpectedly strong rise 

in US production affecting the oil prices. 

It is very common to utilize methodologies based on Fourier analysis to analyse 

the different relations at different frequencies, omitting the time information, despite it 

being difficult to identify structural changes with this type of analysis. Hence we also 

use methodologies based on long run dependence or long memory processes. 

 First, we analyze the relationship of total U.S. crude oil production and WTI 

crude oil prices by studying its dynamics in the time-frequency domain applying 

wavelet tools for its resolution. Analyzing the wavelet coherency we appreciate that the 

regions with higher coherency are between 2003 and 2014 corresponding to the wavelet 

scales of periods from the 1.5 to 7 year band. We focus our phase difference analysis on 

two frequency bands: 1.5 - 4 and 4.5 - 8 years. Analyzing the regions of high coherency 

in the chart, we identify a region of high coherency in the 1.5 - 4 year band between 

2003 and 2009, in frequency bands between 2.5 and 3.5 years with a corresponding 

phase difference in this band between 0 and p/2. This result suggests that U.S. oil 

production and WTI oil prices time series are in phase, they move together, with total 

oil production leading.  

We can find also a region of high coherency between 2009 to 2014 in the 4.5 - 8 

year band, specifically between the 5 and 6 year frequency bands. The phase difference 

of that period stays between p/2 and p, suggesting that oil production and WTI oil 

prices time series are out of phase (negatively correlated) with production oil leading. 



This suggests that the oil production increases precede a decrease in WTI oil prices. 

This coincides with Kilian (2016a) in that the evolution of the U.S. price of oil is 

determined by the increases in shale oil production.  

From this wavelet coherency figure, we can observe a change across time in the 

common frequency bands between crude oil production and WTI; higher frequencies 

between the years 2003 and 2009 suggest that the influence in this time period is a 

short-term relationship, reaching a maximum at the 3 year frequency band. This means 

that the U.S. crude oil production influences WTI oil prices faster than in the preceding 

years. On the other hand, the relationship of both time series in the 2009 to 2014 period 

had a long term component, i.e., a lower frequency band of approximately between 5 to 

6 years, suggesting a longer term impact of the crude oil production over the WTI crude 

oil prices. 

In the second part of the paper, we use fractional integration techniques to 

analyse the behavior of WTI crude oil before and after the shale oil boom in the U.S.. 

We chose the subsamples according to the methodology proposed in Gil-Alana (2008) 

for structural breaks in the context of fractional integration. The break date was found at 

the end of 2003, consistent with the results obtained in Kilian (2016a). The most 

notorious feature observed here is that mean reversion is detected in both production 

and prices series with the data ending at 2003. However, with data starting in 2004 or 

when the whole dataset is used, we notice the lack of mean reversion, with orders of 

integration equal to or higher than 1 in all cases. 

Testing the hypothesis that shale oil production affects WTI oil prices, the 

evolution of the United States price of oil is determined by the increases in shale oil 

production. Also, the development of the United States refining, pipeline and rail 

infrastructure are important to understand and forecast the evolution of the domestic 



price of oil in the United States. There are others factors mentioned by Baumeister and 

Kilian (2016) such as oil supply shocks, demand shocks and shocks to oil price 

expectations. We have only taken into account the crude oil production in the United 

States and WTI crude oil prices because this research has mainly focused on how 

overproduction of shale oil affects WTI oil price behaviour. The influence of other 

variables using similar methodologies to those employed in this paper will be examined 

in future papers. 
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Appendix 
 
Figure 1. Oil production of selected U.S. shale plays	
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Figure 2. US shale oil production by region and the behaviour of WTI crude oil 
prices.	
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Figure 3. Total U.S. oil production and the behaviour of WTI crude oil prices.	

 
 
 
 
Figure 4: Wavelet Coherency and phase-difference between Total U.S. Oil 
Production and WTI crude oil price. 
	

	
On the left: Wavelet Coherency between Total U.S. Oil Production and WTI. On the right: Phase-
difference between Total U.S. Oil Production and WTI at 1.5~4 year (top) and 4.5~8 year (bottom) 
frequency bands 
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Table 1: Estimates of d based on white noise disturbances 

Series No det. terms An intercept A linear time trend 

Prices (total) 1.17   (1.04,  1.34) 1.25   (1.12,  1.42) 1.25   (1.12,  1.42) 

Prices (1st subsample) 0.97   (0.78,  1.27) 0.81   (0.60,  1.19) 0.81   (0.60,  1.19) 

Prices (2nd subsample) 1.16   (1.03,  1.35) 1.28   (1.13,  1.47) 1.28   (1.13,  1.47) 

 Production (total) 0.96   (0.88,  1.07) 0.97   (0.91,  1.05) 0.97   (0.91,  1.05) 

Prod. (1st subsample) 0.93   (0.75,  1.21) 0.73   (0.47,  1.18) 0.70   (0.36,  1.18) 

Prod. (2nd subsample) 0.93   (0.83,  1.07) 0.96   (0.89,  1.05) 0.95   (0.88,  1.05) 
 
 
 

Table 2: Estimates of d based on autocorrelated (Bloomfield) disturbances 
Series No det. terms An intercept A linear time trend 

Prices (total) 0.84   (0.64,  1.15) 0.96   (0.79,  1.25) 0.96   (0.79,  1.25) 

Prices (1st subsample) 0.71   (0.33,  1.16) 0.39   (0.06,  0.79) 0.39   (0.06,  0.79) 

Prices (2nd subsample) 0.91   (0.69,  1.24) 0.96   (0.74,  1.34) 0.96   (0.74,  1.33) 

 Production (total) 0.94   (0.81,  1.11) 1.01   (0.93,  1.12) 1.01   (0.92,  1.13) 

Prod. (1st subsample) 0.78   (0.35,  1.23) 0.10   (-0.23,  0.53) -0.24   (-0.68,  0.43) 

Prod. (2nd subsample) 0.87   (0.72,  1.08) 0.99   (0.89,  1.13) 0.99   (0.88,  1.15) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: Estimates of d using a semiparametric method for the whole dataset 
m Prices Production Lower 95% Upper 95% 
8 0.842 1.500** 0.709 1.290 

9 0.778 1.500** 0.725 1.274 

10 0.787 1.500** 0.739 1.260 

11 0.772 1.378** 0.752 1.247 
12 0.802 1.348** 0.762 1.237 

13 0.790 1.375** 0.771 1.228 

14 0.778* 1.363** 0.780 1.219 
15 0.823 1.280** 0.787 1.212 

*: Evidence of mean reversion at the 5% level; ** Evidence of d > 1 at the 5% level. 
 
Table 4: Estimates of d using a semiparametric method for the first subsample 

m Prices Production Lower 95% Upper 95% 

5 0.630* 0.202* 0.632 1.367 

6 0.800 0.361* 0.664 1.335 
7 0.950 0.277* 0.689 1.310 

8 0.773 0.410* 0.709 1.290 

9 0.673* 0.488* 0.725 1.274 
10 0.655* 0.500* 0.739 1.260 

11 0.720* 0.500* 0.752 1.247 

12 0.745* 0.500* 0.762 1.237 
*: Evidence of mean reversion at the 5% level. 
 
 
Table 5: Estimates of d using a semiparametric method for the second subsample 

m Prices Production Lower 95% Upper 95% 

6 0.554* 1.500** 0.664 1.335 
7 0.679* 1.500** 0.689 1.310 

8 0.766 1.487** 0.709 1.290 

9 0.742 1.349** 0.725 1.274 

10 0.811 1.418** 0.739 1.260 
11 0.784 1.284** 0.752 1.247 

12 0.775 1.150 0.762 1.237 

13 0.781 1.095 0.771 1.228 
*: Evidence of mean reversion at the 5% level; ** Evidence of d > 1 at the 5% level. 
 
 


