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Abstract 

This paper studies the relationship between lagged idiosyncratic volatility and 
subsequent returns in commodity futures markets. The negative pattern observed in 
international equity markets by Ang et al. (2006, 2009) prevails in commodity futures 
markets too, suggesting that it may relate to a yet-to-be-specified risk factor that is 
pervasive across markets. Systematically buying commodities with low idiosyncratic 
volatility and shorting commodities with high idiosyncratic volatility generates an 
average alpha of 4.62% a year. Idiosyncratic volatility signals appear more robust to 
extreme market volatility conditions than momentum and/or term structure signals. 
Robustness tests show that the profitability of idiosyncratic volatility signals is not an 
artifact of transaction costs, illiquidity or data mining. They are neither a mere 
compensation for backwardation and contango nor a manifestation of overreaction. 

 

Keywords: Lagged idiosyncratic volatility; Commodity futures; Backwardation; 
Contango, Liquidity.  

JEL classification: G13, G14. 
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1. Introduction 

An increasing literature documents that commodity futures contracts are attractive 

candidates for tactical asset allocation. For example, Erb and Harvey (2006) and Miffre 

and Rallis (2007) show that trading on momentum is a reliable source of alpha in 

commodity futures markets. More recently, Szakmary et al. (2010) show that pure 

trend-following strategies (e.g. dual moving average crossover) in commodity futures 

markets are substantially profitable.  Similarly, Erb and Harvey (2006) and Gorton and 

Rouwenhorst (2006) demonstrate that the term structure of commodity futures prices is 

a profitable indicator for sorting commodities into portfolios. Jointly exploiting 

momentum and term structure also materializes in sizeable alphas (Fuertes et al., 2010).  

Another strand of the finance literature examines the link between idiosyncratic 

volatility and equity returns. Theory argues that there is no such a relationship 

(idiosyncratic volatility is diversified away and thus not priced; Sharpe, 1964) or it is 

positive (agents who hold undiversified portfolios demand incremental returns for 

bearing idiosyncratic risk; Merton, 1987; Malkiel and Xu, 2002). At an empirical level, 

the evidence is quite mixed. While early studies mainly support the notion that 

idiosyncratic volatility is not priced (e.g., Fama and McBeth, 1973), recent findings 

support the presence of a positive (Malkiel and Xu, 2002; Goyal and Santa-Clara, 2003; 

Fu, 2009), negative (Ang et al., 2006, 2009) and zero relationship (Bali et al. 2005; Bali 

and Cakici 2008; Fink et al., 2010; Huang et al., 2010; Han and Lesmond, 2011) 

between idiosyncratic volatility and mean returns in equity markets.1  

Some rationales have been put forward in the commodity futures literature to explain a 

non-zero relationship between idiosyncratic volatility and returns. Hirshleifer (1988) 

presents a theoretical framework in which idiosyncratic volatility is priced because of 

high fixed set-up costs deterring some investors from participating in commodity 

futures markets. Bessembinder (1992) validates the predictions of Hirshleifer (1988) by 

showing that the expected return of agricultural commodity futures contracts depends 

upon idiosyncratic volatility conditioned on net hedging. 

                                                                 
1 Differences in methodology and data frequency to model idiosyncratic volatility, samples, and 
weighting schemes have been put forward as explanations for the diverging evidence. Others 
relate to bid-ask bounce (Han and Lesmond, 2011) and return reversals (Huang et al., 2010). 
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The first purpose of this paper is to empirically assess the relationship between 

idiosyncratic volatility and mean returns in commodity futures markets. The design of 

an active commodity strategy based on the relationship uncovered is also of interest to 

professional money managers such as CTAs, CPOs and hedge funds. The second 

objective of the paper is to investigate the degree of overlap between idiosyncratic 

volatility signals and the signals exploited in well-established strategies in commodity 

markets. Relatedly, we test whether further abnormal returns can be earned by 

overlaying idiosyncratic volatility signals to the hybrid strategy advocated by Fuertes et 

al. (2010) that jointly exploits momentum and term structure information. Finally, the 

third purpose of the paper is to test whether the performance of the then-identified 

idiosyncratic volatility strategies is robust to a range of issues such as overreaction, 

backwardation versus contango, illiquidity and data mining. We also assess whether the 

results withstand reasonable transaction costs and hold in turmoil and tranquil markets.  

We draw three key conclusions. First, over the period 1992-2011, commodity futures 

with low idiosyncratic volatility outperform their high-idiosyncratic volatility 

counterparts by an average alpha of 4.62% a year; this differential alpha is economically 

and statistically significant. This serves to extend the evidence of Ang et al. (2006, 

2009) from equities to commodity futures markets and hints that the explanation for the 

observed profitability of idiosyncratic volatility strategies may lie in a yet-to-be-

specified macroeconomic or financial factor that is common to both equity and 

commodity futures markets. Second, the idiosyncratic volatility strategies are shown to 

have very little overlap with momentum and/or term structure strategies that are also 

profitable in commodity futures markets. Overlaying the hybrid momentum-term 

structure strategy advocated in Fuertes et al. (2010) to our idiosyncratic volatility 

strategy results in a triple-sort strategy that yields average annualized alphas of 5.6%. 

However, the triple-sort strategies lose out compared to the single-sort idiosyncratic 

volatility portfolios during extreme high/low market volatility conditions. Third, the 

profitability of idiosyncratic volatility signals remain unchallenged after introducing 

reasonable levels of transaction costs and cannot be attributed to overreaction, illiquidity 

risk, data mining or a mere compensation for backwardation and contango.  
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The rest of the paper unfolds as follows. Section 2 presents the dataset and explains the 

design of mean-variance efficient commodity futures benchmarks which is of 

paramount importance for the appropriate modeling of idiosyncratic volatility. Section 3 

uses both a cross-section regression approach and a time-series portfolio formation 

methodology to analyze the link between lagged idiosyncratic volatility and subsequent 

commodity futures returns. Section 4 is devoted to the hybrid triple-sort strategy that 

exploits idiosyncratic volatility, momentum and term structure signals. Section 5 offers 

various robustness checks before concluding in Section 6.  

 

2. Data and Hedging Pressure Benchmarks 

2.1 Commodity Futures Prices and Hedging Pressure 

The analysis is based on the Friday settlement prices of 27 commodity futures which are 

obtained from Datastream alongside weekly hedging pressure data from the CFTC 

Commitment of Traders Report from September 30, 1992 to March 25, 2011. The 

cross-section, time span and weekly frequency of our sample are determined by the 

availability of hedging pressure observations; the positions of hedgers and speculators 

are reported every Friday. The latter are needed for the modeling of the risk premium 

inherent in the commodity futures market as explained below in the next section. The 

commodities are: 12 agricultural (cocoa, coffee C, corn, cotton n°2, oats, frozen 

concentrated orange juice, rough rice, soybean meal, soybean oil, soybeans, sugar n° 11, 

wheat), 4 energy (electricity, heating oil n° 2, light sweet crude oil, natural gas), 4 

livestock (feeder cattle, frozen pork bellies, lean hogs, live cattle), 5 metal (copper, 

gold, palladium, platinum, silver), milk and random length lumber.  

We collect the futures prices on all nearest and second-nearest contracts. The first 

nearby contract is held up to one month before maturity when the position is rolled over 

to the second-nearest contract. Thus positioning the empirical analysis on the front-end 

of the term structure ensures that we often work with the most traded contracts 

available. As usual returns are measured as logarithmic price differences.2  

                                                                 
2 Our commodity strategies are fully collateralized meaning that half of the trading capital is 
invested in risk-free interest bearing accounts for the long portfolio and likewise for the short 
portfolio. Thus investors earn half of the returns of the ‘longs’ and half of the returns of the 
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2.2  Efficient Commodity Futures Benchmarks 

The idiosyncratic volatility of a stock can be straightforwardly measured as the standard 

deviation of the residuals from the 3-factor model of Fama and French (1993) or the 4-

factor model of Carhart (1997). Unfortunately, these benchmarks cannot be readily 

applied to commodities in order to measure idiosyncratic volatility for several reasons. 

First, commodities have been shown to behave differently from stocks and bonds (Erb 

and Harvey, 2006), making equity and fixed income benchmarks poorly suited to 

measure the abnormal returns of commodity futures portfolios. Second, there are also 

grounds to believe that traditional commodity indices such as S&P-GSCI and DJ-

UBSCI are sub-optimal benchmarks; their grievances come from their long-only nature, 

their infrequent rebalancing and their failure to recognize the natural propensity of 

commodity futures to be either in backwardation or in contango.3  

In a recent paper, Basu and Miffre (2011) construct a systematic hedging-pressure risk 

factor that acknowledges the well-accepted tendency of commodity markets to be either 

in backwardation (i.e., hedgers are net short and speculators are net long) or in contango 

(i.e., hedgers are net long and speculators are net short). This factor provides a 

benchmark to extract abnormal commodity futures returns that is well-grounded 

theoretically as it is inspired on the hedging pressure hypothesis of Cootner (1960). 

Cross-sectional and time-series tests in Basu and Miffre (2011) suggest that the price of 

commodity risk based on hedging pressure is positive and often significant while the 

price of risk stemming from the S&P-GSCI is economically and statistically zero. 

                                                                                                                                                                                            

‘shorts’. For expositional simplicity, the empirical results presented hereafter are based on the 
excess returns, i.e. the total return minus the collateral return. Should the risk-free rate be 
proxied by the 3-month US Treasury bill rate, the mean return of the collateral over the period 
considered in the paper would stand at 3.27%. Thus, assuming no margin calls, the gross 
performance of the unlevered portfolios reported hereafter is understated by that amount.   

3 Backwardation occurs when commodity producers are more prone to hedge than commodity 
consumers. Their short positions in commodity futures markets create an imbalance between 
supply and demand that is restored by the intervention of long speculators. Speculators in turn 
will only go long if the futures price is expected to rise as maturity approaches. In contangoed 
markets commodity consumers outnumber commodity producers, leading to excess demand for 
hedging and thus to the essential intervention of short speculators. Speculators will go short if 
the futures price is expected to fall with maturity. It follows from the fundamentals of 
commodity futures pricing that, in order to earn a positive risk premium, investors should take 
long positions in backwardated markets and short positions in contangoed markets. 
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Large traders have to report to the CFTC whether they are commercial (hedgers) or non 

commercial (speculators) and whether they are long or short. We use their declarations 

compiled in the Commitment of Traders report to calculate two hedging pressure 

measures, one for hedgers and another one for speculators. Speculators’ hedging 

pressure is calculated as the number of long positions (i.e. open interests or the amount 

of outstanding contracts) divided by the total number of positions taken by non-

commercial traders over the week. Similarly, hedgers’ hedging pressure is defined in 

terms of their long positions as a fraction of the total open interests associated with 

commercial traders over the week. For example, a hedging pressure of 0.2 for hedgers 

means that over the week 20% of hedgers were long and thus 80% were short, a sign of 

backwardation. A hedging pressure of 0.2 for speculators means that over the week 20% 

of speculators were long and thus 80% were short, a sign of a contangoed market.  

The hedging-pressure mimicking portfolios put forward by Basu and Miffre (2011) are 

based on a double-sort strategy that combines the positions of hedgers and speculators. 

First, the cross-section of commodities is split in two halves (using a 50% threshold) on 

the basis of the average hedging pressure of hedgers over the previous R weeks. The 

first portfolio, called LowHedg, contains low hedgers’ hedging pressure (backwardated) 

commodities whose prices are expected to rise. The second portfolio, called HighHedg, 

contains high hedgers’ hedging pressure (contangoed) commodities whose prices are 

expected to fall. Next, the hedger-based signal is combined with a speculator-based 

signal as follows: out of the constituents of LowHedg, we buy the 40% with the highest 

speculators’ hedging pressure over the previous R weeks. Similarly, out of the 

constituents of HighHedg, we sell the 40% that have the lowest speculators’ hedging 

pressure over the previous R weeks. This long-short double-sort portfolio is held over H 

weeks at the end of which the process is repeated. The returns thus obtained represent 

the hedging-pressure (HP) risk premium that can be cast as a systematic commodity risk 

factor and, in turn, as a natural benchmark to extract idiosyncratic volatility levels. 

Table 1 summarizes the HP risk premium based on the positions of, first, hedgers and, 

second, speculators, with R, H={4, 13, 26, 52} weeks over the period 1992-2011.  

[Insert Table 1 around here] 

The superiority of the HP benchmark in terms of mean-variance efficiency is reflected 

in an average Sharpe ratio that more than doubles that of the S&P-GSCI portfolio and is 
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9 times higher than the Sharpe ratio of the long-only equally-weighted portfolio of all 

commodities.4 Long-only commodity portfolios make inadequate benchmarks to 

measure idiosyncratic volatility because of their failure to acknowledge the natural 

propensity of commodities to switch between contango and backwardation. 

 

3. Idiosyncratic Volatility and the Cross Section of Commodity Returns 

This section studies the relationship between lagged idiosyncratic volatility and 

subsequent commodity futures returns using both a cross-section approach (Section 3.1) 

and a time-series approach (Section 3.2). As explained below, an advantage of the 

cross-sectional test is that it exploits the entire set of commodity futures contracts and 

thus retains more power than the time-series test. On the other hand, the cross-sectional 

approach suffers from the drawback of being less practical relative to time-series tests 

that enable easy-to-deploy portfolios. For completeness, we present both tests.  

 

3.1  Cross-Sectional Tests 

Our methodology builds on Ang et al. (2006, 2009) where the idiosyncratic volatility of 

equities is modeled as the standard deviation of the residuals from a regression of daily 

stock returns on the 3-factor model of Fama and French (1993) over the previous 

month. In the present setting, we formulate instead the following regression model 

��,� � �� � ��. 
��
�,�� � ��,�    (1) 

where ��,� is the return of the ith commodity on week t, 
��
�,�� is the weekly hedging 

pressure risk premium obtained as detailed in Section 2, �� and �� are parameters to 

estimate, and ��,� is a random error term. For each of the i=1,…, N commodities in the 

sample, equation (1) is, first, estimated over a 52-week window. Idiosyncratic volatility 

for the i th commodity over this window, denoted ��,�
�,��, is measured as the standard 

deviation of the residuals. The superscripts R and H refer to the specific ranking and 

holding periods of the hedging pressure benchmark used as systematic risk factor.  

                                                                 
4 The mean returns of the HP benchmark are statistically larger than those of the traditional 
long-only benchmarks according to t-statistic based on pooled returns across all the R-H 
combinations at 2.743(S&P-GSCI) and 6.509 (equal-weighted portfolio). 
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Sequential weekly cross-section regressions are then estimated to examine the sign of 

the relation between idiosyncratic volatility and subsequent commodity futures return 

while taking into account other observable control variables. One such variable is the 

open interest (OI) or the number of outstanding futures contracts at a given time; large 

OI indicates more liquidity and increasing OI means that new money is flowing into the 

marketplace. Following Huang et al. (2010) analysis for equities, we also include past 

returns as regressor to account for a potential negative bias in the cross-section 

relationship between returns and lagged idiosyncratic volatility. Huang et al. (2010) 

illustrate an omitted variable bias problem in monthly cross-section regressions, 

namely, the combination of monthly return reversals that manifest as negative first-

order correlation together with positive cross-section correlation between realized 

idiosyncratic volatility and returns on the same month. In the first holding period, we 

estimate H weekly cross-section regressions  

            ��,��� � ��,� � ��,���,�
�,�� � ��,����,� � ��,���,� � ��,��� � ��,��� ,             (2) 

where the subscript t+j  with j = 1,…,H represents weeks ranging from 52+1 up to week 

52+H;  ��,�
�,�� and �� had been obtained by OLS from equation (1) using information up 

to week 52, ���,� denotes the logarithmic open interest on week 52, ��,� denotes the past 

return on week, and ��,��� is a random error term. This enables a first sequence of 

weekly estimates for the parameter vector {��,�, ��,�, ��,�, ��,�, ��,��� �
� . 

In a recursive process, the idiosyncratic volatility of each of the N commodity futures is 

estimated over a second window that comprises 52+H weeks5, past open interests and 

returns are measured again over the last week of the window also denoted t. These four 

new variables, ��,�
�,�� , ���,�, ��,� and �� are then used in (2) to explain the H weekly 

returns in the second holding period, i.e. returns on weeks (52+H)+j, j=1,…,H, which 

                                                                 
5 A recursive window approach is adopted to obtain  ��,�

�,�� seeking to mitigate estimation noise. 
Effectively, this approach implies that the cross-section regression (2) estimated each week t+j 
in the holding period uses as regressor the idiosyncratic volatility signal based on as many 
weeks of information as possible up to time t. Since the hedging pressure benchmark is obtained 

using a ranking period of R weeks, the initial estimation window for model (1) to obtain ��,�
�,�� 

necessarily starts R weeks after the start of our on September 30, 1992. This recursive window 
approach has the advantage over using daily data to estimate (1) month by month of providing 
by construction a link between adjacent volatilities. As argued by Fink et al. (2010), the latter is 
important given that strong autocorrelation is a stylized fact of volatility. 
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enables H new parameter estimates. This process is iterated until the end of the sample. 

We re-formulate regression using as liquidity control the average of logarithmic OI over 

the ranking weeks immediately preceding portfolio formation (i.e., weeks t-R to t) 

instead of the logarithmic OI on week t as in the original formulation. The cross-section 

regression estimates are shown in Table 2 as averages over R-H combinations and 

weekly periods with significance t-statistics. 

[Insert Table 2 around here] 

The mean effect of past idiosyncratic volatility on future returns (��� is uniformly 

negative and significant. The coefficient �� is insignificant and thus it is not surprising 

that the inclusion or exclusion of past returns has a negligible impact on the 

coefficient ��. Indirectly, these results point towards the absence of reversals in weekly 

commodity returns which corroborated by testing for the significance of the first four 

autocorrelations using the Ljung-Box Q test. The general finding is one of 

insignificance, for instance, only for 4 out of 27 commodities the first order 

autocorrelation is significantly negative, in all other cases it is statistically zero, and 

averages at -0.014 (Q-test p-value=0.4294) across commodities. Moreover, there is very 

little correlation between the regressors ��,�
�,�� and ��,� further ruling out reversals 

(omitted variable bias) as the driver of the negative relation between commodity returns 

and past idiosyncratic volatility levels. Only the coefficient on open interests measured 

as an average is significant at the 5% level, suggesting that liquidity levels may have 

some impact on subsequent commodity futures returns. Finally, the coefficient on the 

hedging pressure factor loading �� is significantly positive, as one might expect, 

consistent with the notion of a risk premium. 

 

3.2 Time-Series Tests 

In the spirit of the analysis in Ang et al. (2006) for equities, equation (1) can be 

exploited to sort commodities into quintiles based on their past idiosyncratic volatility 

levels. To illustrate with an example, let us focus on the strategy that models 

idiosyncratic volatility relative to the hedging-pressure benchmark with R=4 weeks and 

H=13 weeks. First, we extract the idiosyncratic volatility measure ��,�
��,��� for each 

commodity i=1,…,N by estimating equation (1) over an initial 52-week window using 
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��
��,��� as benchmark. The commodities are sorted according to ��,�

��,��� and we focus 

on the bottom and top quintiles, respectively, a low idiosyncratic volatility portfolio 

(called, LowIV) and a high idiosyncratic volatility portfolio (called, HighIV). We buy 

LowIV (expecting a future increase in its returns), sell HighIV (expecting a future 

decrease in its returns) and hold this long-short portfolio for H=13 weeks. The process 

is repeated recursively to obtain new signals ��,�
��,��� over a second window ending at 

observation 52+H, at which time another long-short portfolio is formed and held over H 

weeks and so on. Thus we obtain a sequence of active long-sort idiosyncratic volatility 

returns associated with the benchmark R=4 and H=13. Since there is no a priori reason 

to confine the strategy to ranking and holding periods of 4 and 13 weeks, respectively, 

we proceed similarly for all other hedging-pressure benchmarks reported in Table 1. 

For consistency, both the hedging-pressure benchmarks and the idiosyncratic volatility 

portfolios use 20% of the total cross-section6, and equal weight is given to the 

constituents of each (top and bottom) quintile. The choice of equal weights follows 

from the literature on commodity futures markets (e.g. Erb and Harvey, 2006; Gorton 

and Rouwenhorst, 2007, inter alios). Equal weights are convenient to avoid portfolio 

concentration on specific commodities thus ensuring better diversification. However, 

this weighting scheme can cause illiquidity problems, making it difficult for investors to 

open or close their positions. We will confront the liquidity issue explicitly in Section 5. 

The performance of the idiosyncratic volatility portfolios, summarized in Table 3, 

suggests that the finding in Ang et al. (2006, 2009) of a positive return spread between 

low and high idiosyncratic volatility assets also extends to commodity markets. In line 

with a negative relationship between lagged idiosyncratic volatility and future returns, 

the LowIV portfolios earn positive (albeit statistically insignificant) mean returns 

ranging from 3.21% to 4.43% a year while the HighIV portfolios earn negative (albeit 

statistically insignificant) mean returns ranging from -8.29% to -5.16% a year.7  

[Insert Table 3 around here] 
                                                                 
6 The choice of quintiles follows from Ang et al. (2006, 2009) but similar conclusions hold 
should the percentage of the cross-section included in the long (short) portfolio be set at 15%.   

7 This evidence is in line with Ang et al.’s (2006, 2009) findings for equities where it is also 
shown that the performance of the long-short portfolio is mostly driven by the negative average 
return of the high idiosyncratic volatility (short) portfolio. 
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Taking simultaneous (fully collateralized) long positions in commodities with low 

idiosyncratic volatility and short positions in commodities with high idiosyncratic 

volatility yields mean returns that range from 4.67% to 6.18% a year with an average at 

5.49%. All 16 combinations of R and H periods generate positive and significant mean 

returns at the 5% level or better.  

Raw returns are, however, crude performance indicators as they do not account for the 

natural propensity of commodity markets to be either in backwardation or contango. It 

is thus important to appraise performance on a risk-adjusted basis by means of the 

portfolio’s alpha (� hereafter) relative to a suitable benchmark; in the present context � 

is obtained by regressing the returns of the active commodity strategy (i.e., long-short 

portfolio returns) on the hedging pressure risk premium.8 Table 3 shows � of the long-

short idiosyncratic volatility portfolios that ranges from 3.04% to 5.72% a year with an 

average at 4.62% and are thus economically significant. They are also statistically 

significant at the 5% (10%) level for 12 (15) of the 16 idiosyncratic volatility strategies 

considered. It is also reassuring that the performance of the idiosyncratic volatility 

strategies does not hinge on a priori choices of R and H: all cases yield positive mean 

returns at the 5% level and positive �. Indeed the dispersion (standard deviation and 

range) of the portfolio returns and � across R-H combinations is very small.  

In order to make non-normality robust inferences on the ‘alpha generation’ ability of the 

idiosyncratic volatility strategies, we deploy the bootstrap testing approach suggested 

in Cuthbertson et al. (2008) as an alternative to the conventional OLS t-test on the 

significance of �. The empirical (bootstrap) distribution of the t-statistic is obtained by: 

i) running a regression of the weekly returns of the idiosyncratic volatility strategies on 

a constant and the hedging-pressure benchmark, ii ) constructing B simulated return 

series under the null hypothesis using the estimated beta alongside the bootstrapped 

regression residuals, iii ) running again the initial regression using each of the B 

bootstrapped return series which enables B alphas, !�"�
#�� �

$ , and corresponding bootstrap 

distribution of the t-statistic  !%��"�
#��� �

$ , and iv) assessing the significance of the � 

computed from the original sample on the basis of this bootstrap distribution. The 

residuals are resampled so as to mimic the time-series dependence using a moving-

                                                                 
8 The R and H pair adopted to gauge alpha matches that used to model idiosyncratic volatility. 
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block-bootstrap (MBB) with length L=10 weeks and in a way that preserves also the 

cross-section dependence across commodities (see Fuertes, 2008; Politis and Romano, 

1994). This inference confirms all alphas as significant (except that corresponding to 

R=52 and H=4 weeks) at the 5% level as indicated in italics in Table 3. The results are 

robust to alternative block-length choices such as L={20,30} weeks. 

Thus far the idiosyncratic volatility of commodity futures contracts was defined, using 

equation (1), relative to a hedging pressure benchmark based on the positions of, first, 

hedgers and, second, speculators. We now reiterate the procedure using plausible 

variants of this benchmark considered in Basu and Miffre (2011) which are built on: i) 

the positions of speculators solely, ii ) the positions of hedgers solely, and iii ) the 

positions of, first, speculators and, second, hedgers. At 4.78% on average and with 

range [3.60%, 6.03%] the abnormal performance of the idiosyncratic volatility strategy 

based on these alternative benchmarks is virtually identical to that reported in Table 3. 

A further noteworthy finding is that the long-short idiosyncratic volatility strategies 

perform well even when the holding period of the long-short IV portfolios is lengthened 

to 104, 156 or 208 weeks (i.e., 2, 3 or 4 years). We use as benchmark the hedging 

pressure risk premium based on the positions of, first, hedgers and, second, speculators, 

for the 16 combinations of R and H shown in Table 1.9 The results suggest that the 

“alpha generation” ability of the strategies remains attractive (significant at the 5% 

level) averaging out to 5.56% (H=104), 5.76% (H=156) and 6.88% (H=208) across the 

16 combinations of ranking and holding periods used to model the commodity risk 

premium. The negative relationship between past idiosyncratic volatility and future 

mean returns thus holds over long, as well as short, horizons. This provides evidence 

that a behavioral explanation based on ‘overreaction’ whereby commodities with low 

idiosyncratic volatility perform well in the short- to medium-term and poorly in the 

long-term as the market corrects itself, is unlikely to hold.  

 

                                                                 
9 Since the holding period of the idiosyncratic volatility strategies exceeds one year, it is 
tempting to also set the holding period of the hedging pressure benchmarks to more than a year. 
We decided against this choice as inventory considerations preclude that commodity futures 
markets would stay in backwardation or contango for 2 to 4 years. Such long holding periods 
for the hedging pressure benchmarks are indeed not consistent with the fact that commodity 
futures markets switch from backwardation to contango as inventory levels change.  
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4. Momentum, Term Structure and Idiosyncratic Volatility 

4.1. Portfolio Construction Methodology 

The literature on commodity futures markets has shown that momentum and term 

structure (TS) signals are sources of abnormal returns when exploited in isolation (Erb 

and Harvey, 2006; Gorton and Rouwenhorst, 2006; Miffre and Rallis, 2007) and in 

conjunction (Fuertes et al., 2010). We now test the proposition that the profitability of 

the idiosyncratic volatility strategies documented above can be further enhanced by 

additionally considering momentum and TS signals. The hybrid triple-sort methodology 

that overlays idiosyncratic volatility, momentum and TS signals is outlined next. 

Let the notation Sorting i with i=1,2,3 represent either one of the following signals: i=1 

for momentum, i=2 for TS, and i=3 for idiosyncratic volatility (IV) observed in a set of, 

say, N=100 commodities. First, we split the available cross-section based on Sorting 1 

(momentum) into two portfolios, called Winner and Loser, using the median (50th 

percentile) as threshold. Winner and Loser thus contain each 50 commodities with, 

respectively, the highest and lowest past returns (on average over the former R weeks). 

Second, we extract from Winner and Loser two other portfolios, called 

Winner_HighRoll and Loser_LowRoll, based on Sorting 2 (term structure) using the 

corresponding 50th percentile in each case. Winner_HighRoll thus contains the 25 

commodities with the highest past performance and highest average roll-returns10 over 

the former R weeks and Loser_LowRoll contains the 25 commodities with the lowest 

past performance and lowest average roll-returns over the former R weeks. Third, we 

extract two final sub-portfolios from Winner_HighRoll and Loser_LowRoll based on 

Sorting 3 (IV) using their respective 80th percentiles: from the constituents of 

Winner_HighRoll we buy the 80% (or 20 commodities) with the lowest idiosyncratic 

volatility as modeled in (1) and from the constituents of Loser_LowRoll we sell the 80% 

(or 20 commodities) with the highest idiosyncratic volatility. The resulting long-short 

portfolio is held for H weeks; this triple-sort strategy is denoted Mom-TS-IV hereafter 

                                                                 
10 Roll-returns are measured as the difference in the logarithmic price of the front contract and 
the logarithmic price of the second nearest contract. We take the average of the roll-returns over 
the ranking period to sort the commodities according to their term structure signals. 
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There is no a priori reason to exploit the momentum, TS, and idiosyncratic volatility 

signals in this order so we consider two strategies which alternative orderings that use 

the same percentiles (80th for IV, 50th for momentum and 50th for TS) as thresholds to 

form sub-portfolios; these are called Mom-IV-TS and IV-Mom-TS. This combination of 

percentiles is chosen so that the final long and short portfolios contain each 20% of the 

initial cross section. Thus the comparison with the single-sort idiosyncratic volatility 

strategy that focuses on quintiles is fair. Likewise, for comparability purposes, all the 

strategies considered (single- and triple-sorts) give equal weights to the constituents of 

the long-short portfolios. Other percentiles combinations are examined below.  

 

4.2. Performance Evaluation and Risk Management of the Triple-Sort Strategy 

Before deploying the hybrid triple-sort strategy, it makes sense to assess whether the 

double-sort Mom-TS strategy advocated by Fuertes et al. (2010) encompasses the 

idiosyncratic volatility strategy. Put in a simple question: do the idiosyncratic volatility 

signals contain any pricing “information” not already incorporated in the momentum 

and TS signals? In order to address this question, the left-hand side of Table 4 reports: i) 

Pearson correlation between the returns of the IV-only and Mom-TS strategies, ii ) 

percentage of commodities shared by their long (short) portfolios over time, and iii ) 

Spearman correlation between rank-order of performance across R and H combinations.  

[Table 4 around here] 

The correlation statistics are very low and there is mild overlapping in the commodity 

composition of the LowIV (HighIV) portfolios and the Winner_HighRoll 

(Loser_LowRoll) portfolios that are held long (short). Overall these results provide 

reasonable evidence to discard the conjecture that the idiosyncratic volatility measured 

according to equation (1) is fully driven by momentum or term structure signals.11 This 

warrants the combination of idiosyncratic volatility signals with momentum/TS signals.  

                                                                 
11 We also compared the idiosyncratic volatility portfolios and the single-sort momentum and 
term structure portfolios with results analogous to those reported in Table 4; for instance, the 
Pearson return correlations, ρIV,Mom=0.056 and ρIV,TS=0.0966, are insignificant. An alternative 
methodology employed by Ang et al. (2006) to address a similar question in the context of 
equities consists in forming 5 momentum (or term structure) quintiles and then splitting each 
momentum (or term structure) quintile into 5 idiosyncratic volatility quintiles. This enables a 
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The right-hand side of Table 4 presents for the hybrid triple-sort strategies annualized 

mean returns and alphas; the latter are modeled relative to hedging pressure benchmarks 

presented in Table 1.12 Irrespective of the R-H combination chosen and the order in 

which the three signals are exploited, the triple-sort strategies yield positive mean 

returns that are significant at the 5% level for all but two of the 48 strategies considered. 

On a risk-adjusted basis, the triple-sort strategies perform well with � equal to 5.59% a 

year on average and with 42 cases (out of 48) that offer significant � at the 5% level. As 

borne out by the low standard deviations (Table 4; last row) the triple-sort portfolios 

performance does not hinge on the specific choice of ranking and holding periods.  

The mean return at 5.49% per annum afforded by our IV-only strategy can be increased 

to 7% by overlaying momentum and TS signals in a triple-sort strategy (c.f. Tables 3 

and 4). Likewise, there is an attractive increase in � from 4.62% per annum for the IV-

only strategy to 5.59% for the triple-sort strategies on average.  

Figure 1 plots the future value of $1 invested in 5 long-short commodity portfolios: i) 

the IV-only strategy, ii ) the HP benchmark, and iii ) the triple-sort strategies Mom-TS-

IV, Mom-IV-TS and IV-Mom-TS. Each of these portfolios gives equal weight to all 16 

combinations of R and H periods. In line with our previous findings, the graph shows 

that combining the three signals adds value relative to exploiting the idiosyncratic 

volatility signals alone, and also vis-à-vis the HP risk premia. 

[Insert Figure 1 around here] 

We test the sensitivity of our results to the three percentiles used in the triple-sort 

strategy by allowing each of them to take values {40th, 50th,…,90th} with the restriction 

that the total number of commodities in each of the final long/short portfolios is roughly 

20% of the initial cross-section. Figure 2 presents the annualized α of nine such cases 

alongside the annualized α of the single-sort idiosyncratic volatility strategy; as 

                                                                                                                                                                                            

test for whether idiosyncratic volatility effects persist after controlling for term structure or 
momentum effects. This approach is unfeasible in the present context since our cross-section 
only includes 27 commodity futures.  

12 In line with Fuertes et al. (2010), we find that the Mom-TS strategy is more profitable than 
the individual momentum and term structure strategies. The average annualized � stands at 
4.93% for the double-sort strategy, at 0.61% for the single-sort strategy based on momentum, 
and at 3.93% for the single-sort strategy based on term structure.  
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previously, the reported α’s are averages across the 16 combinations of ranking and 

holding periods. Interestingly, although all strategies present sizeable α, the triple-sort 

strategies outperform the single-sort strategy only when the idiosyncratic volatility 

signal is given somewhat more ‘weight’ than the momentum and term structure signals.  

[Insert Figure 2 around here] 

 

5. Robustness Analysis  

We now conduct a battery of tests to establish that the profitability of the idiosyncratic 

volatility signal (whether in ‘stand-alone’ form or ‘combined’ with momentum and term 

structure signals) is robust to various theoretical issues.  

5.1 Commodity Characteristics: Backwardation and Contango 

Hirshleifer (1988) argues that idiosyncratic volatility should be priced in commodity 

futures markets because some traders are deterred from participating by high set-up 

costs. Bessembinder (1992) supports Hirshleifer’s prediction by showing that 

idiosyncratic volatility conditioned on net hedging is indeed priced in commodity 

futures markets, e.g. long speculators receive a premium (in excess of the contract’s 

systematic risk) for underwriting hedgers’ risk of price fluctuation. It is important 

therefore for the present commodity futures trading analysis to test the extent to which 

net hedging explains the profitability of idiosyncratic volatility signals.  

The left-hand side of Table 5 reports the sensitivities or betas (β) of the IV-only and 

Mom-TS-IV long-short portfolios to the hedging pressure risk premia. Consistent with 

the idea that the single and triple-sort strategies buy backwardated commodity futures 

and sell contangoed commodity futures, β is found to be significantly positive at the 1% 

level for the long-short portfolios. This result confirms that backwardation and contango 

explain part of the performance of idiosyncratic volatility strategies.  

[Insert Table 5 around here] 

To shed further light on this issue, the right-hand side of Table 5 presents the average 

hedgers’ and speculators’ hedging pressures separately for the long and short portfolios 
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constituents over the holding periods of the active strategies. Relatively low hedgers’ 

hedging pressure (net short hedgers) and relatively high speculators’ hedging pressure 

(net long speculators) are signs of backwardated markets, while the opposite applies to 

contangoed markets where hedgers are deemed to be net long and speculators net short.  

On average the speculators’ hedging pressure of the long portfolios stand at 0.6476 and 

0.6675 for the single and triple-sort portfolios, respectively. These hedging pressures 

clearly exceed those of the short portfolios (that stand at 0.5748 and 0.5544 on average) 

and the differential is significant at the 1% level for each of the 16 R-H combinations. 

The opposite is found for hedgers, i.e. their average hedging pressure is less for the long 

than the short portfolios and the gap is often significant. These findings confirm that the 

long (short) portfolios are made mostly of backwardated (contangoed) commodities. 

To sum up, the evidence here presented suggests that in line with theory part of the 

returns of the idiosyncratic volatility portfolios relates to the natural propensity of 

commodity markets to be in backwardation or contango. Yet backwardation and 

contango cannot fully rationalize abnormal performance since � relative to hedging-

pressure benchmarks (c.f Tables 3 and 4) is economically and statistically significant.  

 

5.2   Is Performance Eroded by Transaction Costs? 

The idiosyncratic strategies developed in Sections 3 and 4 are implemented on a small 

cross-section of commodities with a focus on the most traded (i.e. front-end) contracts 

that are relatively cheap and easy to short-sell. It is thus unlikely that the abnormal 

performance we have identified will be totally wiped out by the costs of implementing 

the strategies. To formally assess this issue, we re-construct the portfolios applying 

transaction costs of λTC={0.033%, 0.066%} per commodity trade. These figures are 

quite conservative in the light of Locke and Venkatesh’s (1997) estimates for futures 

trading costs ranging between 0.0004% and 0.033% of notional value. The results 

presented in Figure 3 corroborate that the decline in abnormal performance is almost 

negligible. Net of reasonable transaction costs, the single-sort idiosyncratic volatility 

strategies still generate α of 4.6% (λTC=0.033%) and 4.5% (λTC=0.066%) per annum on 

average. The triple-sort strategies remain profitable too with average net α of 4.9% 

(λTC=0.033%) and 4.2% (λTC=0.066) per annum.  
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[Insert Figure 3 around here] 

The fact that the net and gross α of the single-sort idiosyncratic volatility portfolios are 

indistinguishable from one another indirectly suggests that the trading intensity of the 

single-sort strategy is not especially detrimental on performance. This conclusion can 

also be extended to the triple-sort strategies that exploit idiosyncratic volatility, 

momentum and term structure signals despite their somewhat higher portfolio turnover. 

To conduct this robustness check in a different way, we resort to breakeven transaction 

cost analysis which calculates the required level of cost per commodity trade in order to 

make the alpha of the strategy not larger than zero. Thus higher breakeven costs 

correspond with less trading-intensive strategies. On average across R-H combinations 

we obtain breakeven cost levels equal to 2.28% (StDev = 0.40) for the IV-only strategy 

and lower at 0.41% (StDev=0.22) for the three triple-sort strategies. These breakeven 

costs are substantially higher than Locke and Venkatesh's (1997) ceiling estimate at 

0.033% per commodity trade. Hence, significant alpha remains after plausible levels of 

transaction costs are factored in. The unreported pattern of breakeven transaction costs 

across R-H combinations appears quite plausible since as H increases, for a fixed R, we 

rebalance less frequently and the breakeven costs increase uniformly.  

 

5.3   Idiosyncratic Volatility or Liquidity Risk? 

Han and Lesmond (2011) show for equities that the use of transaction prices induces 

liquidity effects (such as bid-ask bounce and zero returns) that artificially inflate 

idiosyncratic volatility. Once these liquidity effects are accounted for, the negative 

relationship between lagged idiosyncratic volatility and future mean returns vanishes. In 

the present commodity context where liquidity can be proxied by open interests the 

cross-sectional tests presented earlier offer preliminary evidence that idiosyncratic 

volatility is priced even after accounting for liquidity risk (c.f. Table 2). In this section 

we provide a more in-depth analysis of any link that may exist between the two. 

We begin by assessing whether commodity futures with low idiosyncratic volatility tend 

to have low OI in relative terms. This conjecture is rather intuitive. Since investors 

demand a premium for holding assets that are relative illiquid (Pastor and Stambaugh, 

2003), the better performance of the low idiosyncratic volatility portfolio could be 
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driven by the low liquidity of its constituents and vice versa for the high idiosyncratic 

volatility portfolio. In Table 6 (Panel A) we report the ranking of commodities 

according to their average idiosyncratic volatility (IV)13 and average OI over the entire 

sample. The Spearman rank-order correlation does not support the conjecture that 

commodities with low average IV tend to have low average OI; in fact, the rank-order 

correlation is negative albeit statistically insignificant. Clear examples are electricity, 

frozen pork bellies and random length lumber with very low average OI and very high 

average IV, and gold and soybeans with very high average OI and very low average IV. 

[Insert Table 6 around here] 

In Panel B of Table 6 the commodities are grouped into quintiles according to their 

average IV from low to high (first row) and their average OI from low to high (second 

row). The third row reports the percentage of commodities shared by the quintile with 

lowest IV and the quintile with lowest OI, and so forth. The results reveal no clear 

tendency for the commodities with low average idiosyncratic volatility to have lower 

average open interest. The percentages of shared commodities are indeed very small and 

often equal to zero. This preliminary analysis provides prima facie evidence that the 

superior performance of the low IV portfolios (relative to the high IV portfolios) cannot 

be attributed to a compensation for the relative lack of liquidity of their constituents.  

Next the open interest (OI) averaged over a ranking period of R weeks is utilized as 

commodity sorting criteria in order to construct liquidity-driven active portfolios. Given 

that investors would demand higher returns as a compensation for lack of liquidity 

(Pastor and Stambaugh, 2003), our strategy buys the bottom quintile (called LowOI) and 

sell the top quintile (called HighOI); the resulting long-short portfolio is held for H 

weeks. The degree of overlapping between this liquidity-based strategy and our former 

idiosyncratic volatility strategy that buys LowIV and sell HighIV is gauged according to 

the Pearson correlation between their mean returns, and the percentage of commodities 

shared in the long/short portfolios over time. Table 6, Panel C, reports small absolute 

Pearson correlations between the weekly returns of the buy LowIV − sell HighIV 

                                                                 
13 The overall idiosyncratic volatility of a commodity is calculated by fitting equation (1) over 
the entire sample. Since the hedging-pressure benchmark is obtained for 16 combinations of R 
and H periods, we thus obtain 16 measures of annualized idiosyncratic volatility per 
commodity. The average of these 16 measures is what is presented in Table 6, Panel A.  
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portfolios and the buy LowOI − sell HighOI, in line with our previous findings. The 

percentage of commodities that are shared by the low IV and low OI portfolios is also 

very low; likewise for the high IV and high OI portfolios. This evidence suggests that 

LowIV (HighIV) is not tantamount to LowOI (HighOI) and hence, that liquidity risk is 

not fully what is being priced in our idiosyncratic volatility portfolios.  

In a final attempt to control for liquidity risk, we redeploy the idiosyncratic volatility 

strategy by systematically excluding the 10% of commodities with the lowest average 

OI over the R weeks preceding portfolio formation. A caveat of this approach is that it 

further shrinks the already small original cross-section from 27 commodities which may 

further reduce the signal/noise ratio of our analysis. Notwithstanding this caveat, the 

average mean return and � of the idiosyncratic volatility strategy remain sizeable at 

3.5% and 3.07% yearly, respectively. Overall the different tests in this section provide 

strong evidence against the notion that the outperformance of the long-short 

idiosyncratic volatility portfolio is an artifact of liquidity risk.  

 

5.4   Data Snooping Bias 

We now deploy Sullivan et al.’s (1999) Reality Check test in order to assess whether the 

profitability of the best trading rule in a large universe of rules is due to statistical 

chance rather than to a genuine merit in the strategy. This effect is known as data 

mining (or snooping) and it can arise when the same data set is exploited more than 

once for the purposes of inference. In essence, the Reality Check (RC) test evaluates 

whether the best strategy is significantly better than the benchmark by defining 

“significance” in terms of average performance from simulated (bootstrap) data sets.14 

Suppose that we have S trading strategies and one common benchmark so the alpha of 

the strategy & � 1,2, … , *, minus the alpha of the benchmark is �+, - �, . 0. The null 

                                                                 
14 A similar bootstrap approach (i.e., preserving the time-series and cross-section dependence) 
as in Section 3.2 is now deployed although here we resample the observed data as opposed to 
residuals. In addition to the weekly returns of each commodity, we bootstrap the weekly roll-
return series that is required for the term structure strategy and the weekly HP data (hedgers’ 
and speculators’ positions) required to construct the bootstrap HP risk premium data. Each 
bootstrap HP risk premium series is used in the context of equation (1) together with the 
bootstrap return data to extract the IV signal at each iteration j=1,…,B with B= 500. 
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hypothesis of the RC test states that the alpha of the best strategy is no better than the 

alpha of the benchmark (fixed at zero) which can be formalized as follows  

                                                    
� : max, �,�,..,4!�,� 5 0                    (3) 

and a significant test statistic (i.e., rejection) is interpreted as evidence that the best 

strategy outperforms the benchmark after controlling for data snooping bias. The test is 

accomplished by assessing the significance of the supremum statistic 674 � max !%,�, �
4  

with %, � √9��, . 0�/;<=���,� where n is the length of the portfolio return series. 

The significance of statistic 674 computed from the original sample is gauged on the 

basis of its empirical distribution, namely, the distribution of the centered bootstrap 

statistic !674,�
# �� �

$  with 674,�
# � max !%,,�

# . %,�, �
4 or equivalently its bootstrap p-value. 

Effectively, the RC test corrects downward the statistical significance of profitable 

trading strategies if the belong to a universe “dominated” by unprofitable rules; for an 

application of the RC test to the evaluation of technical trading in commodity futures 

see Marshall et al. (2008). We also consider a step-wise multiple test developed by 

Romano and Wolf (2005; denoted StepM) that has better power properties than the RC 

test. Whereas the null hypothesis of the RC test refers to the best trading rule in the 

universe of rules, the StepM can identify several profitable trading rules. 

Our universe consists of the single-sort idiosyncratic volatility strategy, the triple-sort 

strategy Mom(50%)-TS(50%)-IV(80%) with alternative re-orderings (e.g. see Table 4) 

and the triple-sort strategies resulting from the alternative percentile combinations 

reported in Figure 2 with different re-orderings; the alpha of each strategy is averaged 

across R and H combinations. This brings the total number of strategies considered to 

S=28. We consider as common benchmarks the hedgers-speculators’ hedging-pressure 

risk premia discussed in Section 2.2 and the three variants in Section 3.2 denominated 

speculators-only, hedgers-only, and speculators/hedgers’ risk premiums. The p-values 

of the RC test for each of the four types of benchmarks, respectively, at 0.006, 0.002, 

0.002 and 0.000, suggest that the best strategy has significantly positive alpha after 

accounting for data snooping. The StepM test identifies the single-sort IV reported in 

Table 3 and each of the triple-sorts reported in Table 4 as significantly profitable 

irrespective of the heding-pressure risk premia considered.  
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5.5   Idiosyncratic Volatility Trading during Tranquil and Turbulent Markets  

Commodity and traditional bond and equity markets have experienced sharp increases 

in volatility over specific sub-periods of our 1992-2011 sample. For example, equity 

markets became highly volatile in the wake of the early 2000s dotcom bubble and after 

the disastrous collapse of Lehman Brothers in September 2008. Similarly, commodity 

prices have been gyrating wildly after the slowdown in worldwide economic activity 

triggered by the 2008 global financial crisis. Scenarios of high versus low market 

volatility provide an interesting laboratory to re-assess the profitability of our trading 

strategies. We define market volatility with reference to three asset classes: 

commodities, bonds and equities. Three conditional volatility series are obtained by 

fitting a GARCH(1,1) model to the weekly returns of, respectively, the S&P-GSCI, the 

JPMorgan US Government Bond Index and the S&P 500 Composite Index; the data sets 

are obtained from Datastream. We then define “tranquil” and “turmoil” regimes on the 

basis of the 5th and 95th percentiles of each volatility series. Table 7 shows the 

annualized returns of long-short idiosyncratic volatility portfolios (averaged across R 

and H pairs) and long-only portfolios (the S&P-GSCI and an equally-weighted portfolio 

of the 27 commodities) separately during each volatility regime.  

[Insert Table 7 around here] 

Irrespective of the asset class observed to define market volatility, in turmoil regimes 

investors are better off holding long-short commodity futures positions based on 

idiosyncratic volatility signals than being long-only. For example, when the conditional 

volatility of the S&P-GSCI exceeds 34.66% a year (an event that occurs 5% of the time 

by construction), the outperformance of the long-short portfolios relative to the long-

only commodity portfolios stands at an average of 38.67% a year. Likewise, in turmoil 

regimes for bond and equity markets the mean returns of the long-short idiosyncratic 

volatility portfolios exceed those of the long-only commodity portfolios, respectively, 

by about 27.64% or 58.87% a year. This evidence is consistent with the notion that 

episodes of heightened market volatility (where “market” refers to either commodities, 

bonds or equities) are often associated with falling commodity futures prices, making 

long-short portfolios more profitable than long-only positions.  
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On the other hand, when the annualized conditional volatility of the S&P-GSCI is less 

than 12.45% (an event that occurs 5% of the time by construction), the long-short 

portfolios perform poorly relative to long-only commodity portfolios. But this 

conclusion does not extend to traditional asset markets, namely, the long-short 

portfolios remain attractive when bond and equity markets are in a tranquil state. To 

sum up, the superior performance of long-short portfolios vis-à-vis long-only portfolios 

prevails in both high and low volatility states in bond and equity markets.  

A final important observation from Table 7 is that the single-sort strategy that exploits 

idiosyncratic volatility signals emerges as more robust to extremely high and low 

volatility markets than the triple-sort that additionally exploits momentum and TS 

signals. This is a reflection of the fact that the idiosyncratic volatility porfolios have 

better higher order moment properties than the momentum- and TS-based portfolios. In 

fact, the skewness and kurtosis of the IV-only portfolios are, respectively, -0.0218 and 

3.3305 on average across R and H combinations whereas the counterpart statistics for 

the double-sort Mom-TS portfolios are -0.1338 and 3.4795. These findings indirectly 

bear out that idiosyncratic volatility signals are less contaminated by noise than 

momentum and TS signals during extreme (high/low) market volatility conditions. 

 

5.6   Tactical versus Strategic Asset Allocation Roles  

Aside from their role for tactical asset allocation, commodities are typical strategic 

asset allocation vehicles, namely, long-only commodity portfolios have attractive risk 

diversification and inflation hedging properties (Bodie and Rosansky, 1980; Erb and 

Harvey, 2006; Gorton and Rouwenhorst, 2006). In this section we test whether these 

strategic allocation roles are preserved in our long-short commodity portfolios.  

We begin by presenting in Table 8, Panel A, the correlations between the returns of our 

idiosyncratic volatility strategies and those of bonds and equities.15 The analysis is 

based on Datastream data on the JPMorgan US Government Bond Index, JPMorgan US 

                                                                 
15 Earlier studies urged caution against the relative low signal/noise ratio inherent in weekly or 
daily sampling frequencies for testing the inflation-hedge effectiveness of commodities. Thus 
Bodie and Rosansky (1980) and Gorton and Rouwenhorst (2006) resort to quarterly data 
whereas Erb and Harvey (2006) use annual data. We adopt the former approach and convert into 
quarterly the weekly returns of our idiosyncratic volatility strategies.  
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Cash 3m Index, S&P 500 Composite Index, and Russell 1000 Index. Panel B presents 

similar information for the long-only S&P-GSCI and a long-only equally-weighted 

portfolio of the 27 commodities. For space constraints but without loss of generality, we 

only present results for the first four R-H combinations reported in previous tables. 

[Insert Table 8 around here] 

At -0.0300 and -0.0327 on average the correlations between equity markets (S&P 500 

Composite Index, Russell 1000 Index) and our long-short commodity portfolios in 

Panel A are much lower than those with long-only commodity portfolios in Panel B 

(0.2065 and 0.2213). The correlations between fixed income indices (US Government 

Bond Index and US Cash 3m Index) and long-short commodity portfolios are higher (at 

-0.0172 and 0.0048 on average) than with long-only commodity portfolios (at -0.2694 

and -0.2057). Overall the correlations are quite low confirming that, by tactically 

including long-short commodity positions into their asset mix, institutional investors 

can simultaneously earn an abnormal return and reduce the overall portfolio risk.  

Second, we test whether our long-short commodity portfolios can be used as a hedge 

against unexpected inflation (UI). The latter is measured as the estimated errors of an 

ARMA(1,1) model fitted to logarithmic quarterly changes in US CPI data also from 

Datastream. The correlations between UI and the returns of the single-sort idiosyncratic 

volatility portfolios in Panel A of Table 8 average out at -0.2367 and are significant at 

the 5% level. As shown in Table 8, the correlations between the long-short portfolios 

and UI suggest that some ability (albeit small) to hedge inflation is shown by the triple-

sort strategies but none for the single-sort strategy. However, the long-only commodity 

portfolios appear superior in this regard with the largest average correlation with UI at 

0.4480.  This evidence is in line with previous studies in suggesting that a downside of 

taking both long and short positions in commodity futures markets is to lose part, if not 

all, of the inflation hedge that naturally characterizes long-only commodity portfolios 

(e.g., see Miffre and Rallis, 2007).  

 

6. Summary and Conclusions 

The paper shows that the pricing ability of idiosyncratic volatility documented in 

international equity markets by Ang et al. (2006, 2009) also prevails in commodity 
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markets. Our long-short active strategies that buy commodities with low idiosyncratic 

volatility and sell commodities with high idiosyncratic volatility earn on average an 

alpha of 4.62% a year which is economically and statistically significant. We also find 

that there is little overlap between the idiosyncratic volatility portfolios and the double-

sort portfolios advocated by Fuertes et al. (2010) that jointly exploit momentum and 

term structure signals. This motivates us to combine the information embedded in 

idiosyncratic volatility, past performance and past roll-returns in a triple-sort. 

Systematically buying (shorting) commodities with low (high) idiosyncratic volatility, 

good (poor) past performance and high (low) average roll-returns generates annualized 

alphas of 5.59%. During turbulent market conditions the long-short idiosyncratic 

volatility strategies are shown to be more profitable than during tranquil periods, and 

remain substantially more attractive than long-only commodity portfolios. However, the 

triple-sort strategies are less attractive during extreme high/low market volatility 

scenarios. This finding reflects that momentum- and/or TS-based portfolios have less 

favourable higher moments than idiosyncratic volatility-based portfolios.  Finally, we 

corroborate that the profitable long-short commodity portfolios retain the desirable risk 

diversification properties that are characteristic of long-only commodity indices albeit at 

the cost of losing the inflation hedge. 

The fact that idiosyncratic volatility strategies appear profitable across both equity and 

commodity markets suggests that their performance might relate to the presence of a 

yet-to-be-specified risk factor that is common to both asset classes. Robustness tests 

show that this risk factor is not simply a proxy for transaction costs, liquidity risk, 

momentum and term structure effects, or the natural propensity of commodity markets 

to be either in backwardation or contango. We also establish that the profitability of 

idiosyncratic volatility strategies in commodity markets is not a manifestation of 

overreaction, nor an artifact of data mining and withstands various specifications of the 

risk-return relationship used to extract the idiosyncratic volatility signal. While we have 

ruled out many explanations why idiosyncratic volatility matters in commodity futures 

markets is yet another puzzle that warrants further research.  
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Table 1. Risk premium of commodity futures.  

The table reports summary statistics for the hedging pressure risk premium of Basu and 
Miffre (2011) which is based on the positions of first, hedgers and second, speculators 
using 40% of the cross-section available at the time of portfolio formation. R and H 
measured in weeks are, respectively, the ranking period over which the positions of 
hedgers and speculators are measured and the holding period over which the long 
(backwardation) short (contango) portfolios are held. Mean (µ) and standard deviation 
(StDev) are annualized. Sharpe is the ratio of its annualized mean to its annualized 
standard deviation. *, ** and *** denote significant at the 10%, 5% and 1% levels, 
respectively. t-statistics are based on heteroskedasticity and autocorrelation robust 
Newey-West (1987) standard errors.  

 

t(μ) StDev Sharpe

Panel A: Individual risk premium

R = 4, H = 4 0.0328 1.11 0.1011 0.3243

R = 4, H = 13 0.0357 * 1.73 0.0959 0.3721

R = 4, H = 26 0.0473 ** 2.10 0.0979 0.4832

R = 4, H = 52 0.0393 1.64 0.0947 0.4147

R = 13, H = 4 0.0304 1.39 0.0987 0.3081

R = 13, H = 13 0.0419 * 1.88 0.0976 0.4298

R = 13, H = 26 0.0690 *** 3.06 0.0977 0.7063

R = 13, H = 52 0.0353 1.33 0.0961 0.3669

R = 26, H = 4 0.0583 ** 2.06 0.0977 0.5967

R = 26, H = 13 0.0596 ** 2.34 0.0989 0.6026

R = 26, H = 26 0.0672 ** 2.79 0.0959 0.7010

R = 26, H = 52 0.0316 1.16 0.0912 0.3458

R = 52, H = 4 0.0712 *** 3.19 0.0959 0.7433

R = 52, H = 13 0.0566 ** 2.51 0.0958 0.5907

R = 52, H = 26 0.0267 1.18 0.0965 0.2763

R = 52, H = 52 0.0307 1.24 0.0925 0.3315

Average 0.0458 0.0965 0.4746

StDev 0.0155 0.0024 0.1584

Panel B: Long-only benchmarks

S&P-GSCI 0.0428 0.81 0.8448 0.1965

Equally-weighted portfolio 0.0064 0.21 0.2273 0.0529

μ
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Table 2. Idiosyncratic volatility and commodity returns: cross-section analysis.  

The statistics reported in this table pertain to sequential cross-section regressions, equation (2), of commodity futures returns at week t+j,  
j=1,…H, where H is the length in weeks of each holding period, on various lagged factors. The table report averages of the coefficient estimates 
for each of the R-H combinations over different weeks. λ0 is the intercept. λ1 is the coefficient of past idiosyncratic volatility (IV) measured with 
information up to t. λ2 is the coefficient of logarithmic open interest at t (OI1). λ2

* is the log open interest averaged over the ranking weeks that 
immediately precede portfolio formation (OI2). λ3 is the coefficient of past returns (denoted R(-1) below). λ4 is the coefficient estimated loading 
βi,t on the hedging pressure benchmark (denoted βHP below) obtained from the estimation of equation (1) and its reported significance t-ratio is 
based on standard deviations computed using Shanken’s (1992) error-in-variables correction. All other t-ratios in the table are based on Newey-
West (1987) standard errors.  *, ** and *** denote significant at the 10%, 5% and 1% levels, respectively.  

100xλ 0 t (λ 0) λ 1 t (λ 1) 100xλ2 t (λ2) 100xλ2* t (λ2* ) 100xλ3 t (λ3) 100xλ4 t (λ4 )

Model 1 0.1740 7.74 *** -0.0417 -6.47 *** 0.1369 2.61 ***

Model 2 0.1422 2.40 ** -0.0402 -5.91 *** 0.0027 0.52 0.1335 2.54 **

Model 3 0.1659 7.34 *** -0.0388 -5.90 *** -0.1575 -0.65 0.1436 2.89 ***

Model 4 0.1303 2.14 ** -0.0369 -5.32 *** 0.0032 0.61 -0.1790 -0.72 0.1346 2.81 ***

Model 5 0.0397 0.56 -0.0384 -5.05 *** 0.0128 2.10 ** 0.1297 2.70 ***

Model 6 0.0188 0.26 -0.0352 -4.61 *** 0.0140 2.29 ** -0.0940 -0.35 0.1371 2.75 ***

R(-1) βHPConstant IV OI1 OI2
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Table 3. Idiosyncratic volatility and commodity returns: time series analysis.  
 

The table reports annualized mean returns (µ) and annualized abnormal performance (α) for 
strategies that sort commodities into quintiles based on past idiosyncratic volatility (IV). R 
and H, expressed in weeks, refer to the ranking and holding periods of the hedging pressure 
benchmark that is used to model idiosyncratic volatility. H is also the holding period of the 
idiosyncratic volatility strategy. The strategies buy the bottom (low idiosyncratic volatility) 
quintile and sell the top (high idiosyncratic volatility) quintile. The resulting long-short 
position is maintained over H subsequent weeks. α is measured relative to the same hedging 
pressure benchmark as the one used to model idiosyncratic volatility. Italics denotes α 
significance according to the moving-block-bootstrap distribution with block length L=10 
weeks. t-statistics are based on robust Newey-West (1987) standard errors.  

 

             

μ t(μ) α t (α ) μ t(μ) α t (α ) μ t(μ) α t (α )

R = 4, H = 4 0.0406 1.46 0.0344 1.25 -0.0829 -1.73 -0.0800 -1.67 0.0618 2.79 0.0572 2.66

R = 4, H = 13 0.0389 1.39 0.0317 1.14 -0.0741 -1.57 -0.0664 -1.39 0.0565 2.62 0.0490 2.36

R = 4, H = 26 0.0376 1.33 0.0279 0.99 -0.0770 -1.64 -0.0676 -1.42 0.0573 2.64 0.0478 2.29

R = 4, H = 52 0.0341 1.22 0.0284 1.03 -0.0780 -1.68 -0.0708 -1.50 0.0561 2.65 0.0496 2.35

R = 13, H = 4 0.0389 1.39 0.0329 1.18 -0.0807 -1.71 -0.0765 -1.62 0.0598 2.74 0.0547 2.55

R = 13, H = 13 0.0364 1.30 0.0299 1.07 -0.0763 -1.63 -0.0677 -1.45 0.0564 2.64 0.0488 2.37

R = 13, H = 26 0.0355 1.26 0.0205 0.71 -0.0702 -1.50 -0.0592 -1.26 0.0529 2.44 0.0399 1.96

R = 13, H = 52 0.0321 1.14 0.0270 0.97 -0.0797 -1.73 -0.0739 -1.59 0.0559 2.65 0.0504 2.45

R = 26, H = 4 0.0398 1.44 0.0306 1.11 -0.0719 -1.49 -0.0580 -1.22 0.0559 2.51 0.0443 2.13

R = 26, H = 13 0.0390 1.39 0.0285 1.01 -0.0738 -1.56 -0.0653 -1.37 0.0564 2.59 0.0469 2.22

R = 26, H = 26 0.0354 1.26 0.0253 0.88 -0.0755 -1.60 -0.0648 -1.35 0.0554 2.54 0.0450 2.10

R = 26, H = 52 0.0328 1.16 0.0273 0.98 -0.0753 -1.60 -0.0698 -1.47 0.0540 2.50 0.0486 2.29

R = 52, H = 4 0.0418 1.46 0.0273 0.95 -0.0516 -1.03 -0.0336 -0.66 0.0467 2.00 0.0304 1.36

R = 52, H = 13 0.0405 1.40 0.0283 0.97 -0.0639 -1.26 -0.0501 -0.98 0.0522 2.21 0.0392 1.73

R = 52, H = 26 0.0351 1.21 0.0292 1.03 -0.0645 -1.28 -0.0595 -1.17 0.0498 2.13 0.0444 1.92

R = 52, H = 52 0.0443 1.43 0.0364 1.25 -0.0570 -1.13 -0.0489 -0.95 0.0507 2.16 0.0426 1.89

Average 0.0377 0.0291 -0.0720 -0.0633 0.0549 0.0462

StDev 0.0034 0.0037 0.0087 0.0117 0.0037 0.0064

Long-short IV portfolioLow IV portfolio High IV portfolio
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Table 4. Triple-sort strategies based on idiosyncratic volatility, momentum and term structure.  

The left-hand side of the table reports i) Pearson correlation between the weekly returns of the idiosyncratic volatility (IV) portfolios and double-sort 
momentum-term structure portfolios, ii ) the percentage of commodities shared in the long and short portfolios on average over time and iii ) Spearman 
correlation between the rank-order of mean returns across R-H combinations. R and H are ranking and holding weeks of the hedging pressure benchmark that is 
used to model idiosyncratic volatility. H is also the holding period of the active strategy. *, ** and *** denotes significant at the 10%, 5% and 1% levels. The 
right-hand side of the table reports annualized mean returns (µ) and annualized abnormal performance (α) for triple-sort strategies based on idiosyncratic 
volatility (IV), momentum (Mom) and term structure (TS) signals. The weights of each signal are 80%, 50% and 50%, respectively. α is measured relative to 
the same hedging pressure benchmark as the one used to model idiosyncratic volatility. Italics denotes α significance according to the moving-block-bootstrap 
distribution with block length L=10 weeks. t-statistics are based on robust Newey-West (1987) standard errors.  
 

Long Short μ t(μ) α t (α ) μ t(μ) α t (α ) μ t(μ) α t (α )

R = 4, H = 4 0.0985 *** 0.0934 0.1718 0.0516 3.20 0.0473 2.91 0.0594 2.96 0.0543 2.67 0.0673 2.38 0.0619 2.15

R = 4, H = 13 0.1047 *** 0.0870 0.1855 0.0600 3.63 0.0497 3.14 0.0658 3.41 0.0553 2.86 0.0731 2.87 0.0637 2.36

R = 4, H = 26 0.0512 * 0.0941 0.1706 0.0552 3.04 0.0434 2.57 0.0618 2.94 0.0506 2.37 0.0643 2.62 0.0550 2.04

R = 4, H = 52 0.0557 ** 0.0941 0.1882 0.0406 2.56 0.0377 2.37 0.0479 2.14 0.0439 1.96 0.0579 1.81 0.0540 1.69

R = 13, H = 4 0.1303 *** 0.0696 0.1771 0.0856 4.28 0.0750 3.87 0.0899 4.19 0.0783 3.78 0.0933 4.10 0.0813 3.69

R = 13, H = 13 0.1914 *** 0.0783 0.1681 0.0803 4.34 0.0674 3.87 0.0885 3.86 0.0743 3.33 0.0990 3.47 0.0864 2.94

R = 13, H = 26 0.1108 *** 0.0824 0.1647 0.0923 4.14 0.0687 3.28 0.0936 4.18 0.0686 3.24 0.0938 4.07 0.0717 3.22

R = 13, H = 52 0.0743 ** 0.0706 0.2000 0.0527 3.09 0.0456 2.85 0.0599 2.74 0.0516 2.47 0.0659 2.53 0.0590 2.28

R = 26, H = 4 0.1593 *** 0.0537 0.1789 0.0912 4.29 0.0713 3.50 0.0961 4.47 0.0754 3.69 0.0931 4.00 0.0720 3.27

R = 26, H = 13 0.1695 *** 0.0551 0.1739 0.0670 2.58 0.0462 1.75 0.0670 2.95 0.0455 2.13 0.0582 2.92 0.0370 2.14

R = 26, H = 26 0.1175 *** 0.0529 0.1824 0.0644 2.31 0.0432 1.29 0.0610 2.88 0.0391 1.93 0.0493 2.94 0.0272 2.04

R = 26, H = 52 0.1363 *** 0.0706 0.1647 0.0548 2.24 0.0492 1.97 0.0577 2.74 0.0522 2.53 0.0468 2.64 0.0401 2.42

R = 52, H = 4 0.1019 *** 0.0389 0.1873 0.0974 3.37 0.0701 2.15 0.0803 3.39 0.0530 2.30 0.0763 3.97 0.0468 2.92

R = 52, H = 13 0.1531 *** 0.0328 0.1761 0.0870 3.33 0.0634 2.45 0.0800 3.34 0.0575 2.59 0.0773 3.49 0.0538 2.74

R = 52, H = 26 0.0705 *** 0.0364 0.1697 0.0732 2.83 0.0627 2.44 0.0721 3.22 0.0616 2.89 0.0634 3.15 0.0525 2.82

R = 52, H = 52 0.0131 0.0750 0.1625 0.0476 1.76 0.0379 1.38 0.0595 2.56 0.0499 2.21 0.0417 2.00 0.0320 1.64

Spearman rank corr 0.1706

Average 0.1086 0.0678 0.1763 0.0688 0.0549 0.0713 0.0569 0.0700 0.0559

StDev 0.0479 0.0207 0.0103 0.0181 0.0129 0.0148 0.0116 0.0178 0.0169

Mom-TS-IV Mom-IV-TS IV-Mom-TS

Performance of Triple-Sort Strategies

Pearson return 

correlation

Shared commodities

Overlap between IV and Mom-TS
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Table 5. Backwardation and contango. 

The left panel of the table presents the sensitivities (β) of the single and triple-sort strategies to the hedging-pressure risk premia. IV-only denotes the single-sort 
idiosyncratic volatility strategy, Mom-TS-IV denotes the triple-sort strategy based on first, momentum, second, term structure and, third, idiosyncratic volatility 
signals. The second and third panels report the average hedging pressure of speculators and hedger for the constituents of the Long and Short portfolios over the 
holding periods of the IV-only and Mom-TS-IV strategies. R and H are ranking and holding weeks of the hedging-pressure benchmark that is used to model 
idiosyncratic volatility. H is also the holding period of the idiosyncratic volatility strategy. p-value is for the null hypothesis that the hedging pressure of the 
Long and Short portfolio are identical.  

   

β t (β ) β t (β ) Long Short p -value Long Short p -value Long Short p -value Long Short p -value

R = 4, H = 4 0.1621 3.81 0.1913 4.46 0.6488 0.5746 0.00 0.6946 0.5381 0.00 0.4305 0.4378 0.01 0.3952 0.4579 0.00

R = 4, H = 13 0.1729 3.79 0.2179 5.01 0.6483 0.5741 0.00 0.6771 0.5531 0.00 0.4312 0.4362 0.09 0.4042 0.4425 0.00

R = 4, H = 26 0.1939 4.31 0.1887 4.44 0.6485 0.5733 0.00 0.6621 0.5666 0.00 0.4319 0.4363 0.15 0.3994 0.4494 0.00

R = 4, H = 52 0.1625 3.70 0.0988 2.14 0.6462 0.5740 0.00 0.6465 0.5748 0.00 0.4324 0.4342 0.55 0.4144 0.4513 0.00

R = 13, H = 4 0.1534 3.39 0.3579 8.13 0.6471 0.5753 0.00 0.7079 0.5247 0.00 0.4308 0.4375 0.02 0.3911 0.4559 0.00

R = 13, H = 13 0.1682 3.99 0.2804 6.82 0.6465 0.5746 0.00 0.6754 0.5389 0.00 0.4308 0.4368 0.04 0.4078 0.4487 0.00

R = 13, H = 26 0.1811 4.22 0.3076 6.94 0.6463 0.5764 0.00 0.6544 0.5529 0.00 0.4321 0.4353 0.28 0.4126 0.4419 0.00

R = 13, H = 52 0.1658 3.65 0.2071 4.89 0.6451 0.5732 0.00 0.6317 0.5768 0.00 0.4311 0.4357 0.12 0.4231 0.4292 0.03

R = 26, H = 4 0.2160 4.97 0.3963 9.05 0.6458 0.5789 0.00 0.6929 0.5323 0.00 0.4318 0.4345 0.38 0.3981 0.4525 0.00

R = 26, H = 13 0.1637 3.61 0.3669 8.42 0.6457 0.5773 0.00 0.6752 0.5541 0.00 0.4318 0.4367 0.10 0.4021 0.4447 0.00

R = 26, H = 26 0.1662 3.62 0.3539 7.58 0.6452 0.5755 0.00 0.6603 0.5668 0.00 0.4322 0.4368 0.12 0.4059 0.4405 0.00

R = 26, H = 52 0.2099 4.70 0.2599 5.80 0.6480 0.5723 0.00 0.6334 0.5765 0.00 0.4296 0.4362 0.02 0.4251 0.4351 0.00

R = 52, H = 4 0.2276 4.77 0.4114 10.81 0.6504 0.5752 0.00 0.6750 0.5475 0.00 0.4278 0.4416 0.00 0.4044 0.4505 0.00

R = 52, H = 13 0.2203 4.65 0.3971 9.65 0.6496 0.5751 0.00 0.6634 0.5602 0.00 0.4280 0.4418 0.00 0.4090 0.4429 0.00

R = 52, H = 26 0.1930 4.03 0.3876 9.50 0.6484 0.5728 0.00 0.6549 0.5709 0.00 0.4284 0.4423 0.00 0.4123 0.4373 0.00

R = 52, H = 52 0.2815 6.93 0.3383 7.63 0.6521 0.5745 0.00 0.6496 0.5941 0.00 0.4262 0.4419 0.00 0.4134 0.4329 0.00

Average 0.1899 0.2976 0.6476 0.5748 0.6659 0.5580 0.4304 0.4376 0.4074 0.4446

Hedging pressure beta Average hedging pressure of speculators Average hedging pressure of hedgers

IV-only Mom-TS-IV IV-only Mom-TS-IVIV-only Mom-TS-IV



34 

 

Table 6. Idiosyncratic volatility and liquidity risk.  
 

Panel A sorts commodities by average idiosyncratic volatility (IV) and average open interest (OI) over the sample period and reports the Spearman rank-order 
correlation. Panel B groups commodities in quintiles from low to high idiosyncratic volatility and reports the average IV and OI in each quintile; the last row 
reports the percentage of shared commodities in the quintiles obtained according to average IV (from low to high) and the quintiles according to average OI 
(from low to high). Panel C measures the overlap between idiosyncratic volatility (IV)-based portfolios and open interest (OI)-based portfolios through Pearson 
return correlation and percentage of shared commodities in the long/short portfolios. *, ** and *** denotes significant at the 10%, 5% and 1% levels. 

                                     

Panel A: Ranking of commodities

Commodity futures IV Commodity futures OI
Feeder cattle 0.1447 Electricity 2,234.64        
Live cattle 0.1519 Frozen pork bellies 2,568.56        
Gold 0.1592 Random length lumber 2,702.12        
Platinum 0.2092 Rough rice 4,617.61        
Soybean oil 0.2367 Oats 5,958.60        
Soybeans 0.2399 Palladium 6,986.49        
Lean hogs 0.2614 Feeder cattle 7,884.38        
Cotton n°2 0.2715 Platinum 11,811.18      
Copper 0.2717 Frozen concentrated orange juice12,780.58      
Rough rice 0.2718 Copper 13,271.42      
Corn 0.2724 Lean hogs 27,733.13      
Soybean meal 0.2725 Cocoa 29,205.38      
Silver 0.2770 Cotton n°2 33,137.87      
Wheat 0.2865 Coffee C 33,594.58      
Cocoa 0.3059 Soybean meal 38,945.57      
Sugar n° 11 0.3144 Heating oil n° 2 43,389.38      
Oats 0.3165 Soybean oil 48,569.36      
Frozen concentrated orange juice0.3179 Silver 51,000.08      
Random length lumber 0.3182 Blendstock RBOB gasoline 54,401.32      
Heating oil n° 2 0.3224 Live cattle 56,847.26      
Light sweet crude oil 0.3364 Natural gas 59,557.16      
Frozen pork bellies 0.3408 Wheat 80,914.31      
Palladium 0.3437 Soybeans 86,662.13      
Blendstock RBOB gasoline 0.3757 Gold 108,612.75    
Coffee C 0.3810 Sugar n° 11 142,239.78    
Electricity 0.4405 Light sweet crude oil 161,092.84    
Natural gas 0.4644 Corn 216,874.07    

Spearman rank-order corr -0.1569

Low to high average IV Low to high average OI

Shared comm 

long position

Shared comm 

short position

R = 4, H = 4 -0.3019 *** 0.1084 0.0211
R = 4, H = 13 -0.2997 *** 0.1159 0.0232
R = 4, H = 26 -0.2928 *** 0.1412 0.0235
R = 4, H = 52 -0.2716 *** 0.1059 0.0353
R = 13, H = 4 -0.3187 *** 0.1225 0.0106
R = 13, H = 13 -0.3163 *** 0.1275 0.0203
R = 13, H = 26 -0.3032 *** 0.1471 0.0235
R = 13, H = 52 -0.2530 *** 0.1412 0.0353
R = 26, H = 4 -0.3114 *** 0.1189 0.0070
R = 26, H = 13 -0.3246 *** 0.1217 0.0029
R = 26, H = 26 -0.3251 *** 0.1235 0.0000
R = 26, H = 52 -0.3149 *** 0.1176 0.0000
R = 52, H = 4 -0.2720 *** 0.1231 0.0335
R = 52, H = 13 -0.2837 *** 0.1313 0.0328
R = 52, H = 26 -0.2709 *** 0.1333 0.0303
R = 52, H = 52 -0.2518 *** 0.1250 0.0375

Average -0.2945 0.1253 0.0211
StDev 0.0245 0.0114 0.0132

Pearson                                      

return correlation

Panel C: Overlap between IV-based and liquidity-based strategies

Quintiles Q1 Q2 Q3 Q4 Q5

Average IV 0.0250 0.0365 0.0405 0.0454 0.0556
Average OI 3616.31 10546.81 32523.31 50841.48 143096.31
Shared 0.00% 20.00% 28.57% 0.00% 0.00%

Panel B: Grouping of commodities
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Table 7. Commodity portfolio returns during high and low market volatility periods.  

The table presents the annualized mean returns of long-only and long-short commodity portfolios in periods 
of extreme volatility in commodity, fixed income and equity markets, where the performance of the long-
short idiosyncratic volatility portfolios is averaged across different combinations of ranking and holding 
periods. IV, Mom and TS stand for idiosyncratic volatility, momentum and term structure, respectively.  

 

 

  

Volatility regimes

IV-only Mom-TS-IV Mom-IV-TS IV-Mom-TS S&P-GSCI Equal-weights

Commodity market: S&P-GSCI

Low : below 5
th

  percentile < 12.45% 0.0123 -0.0376 -0.0384 -0.0375 0.1247 0.1853

High : above 95
th

 percentile  > 34.66% 0.2573 0.1353 0.1698 0.1630 -0.1242 -0.2865

Fixed income market: JPMorgan US Gov Bond index

Low : below 5
th

  percentile < 3.75% 0.2113 0.0220 0.0265 0.0145 -0.1576 -0.2536

High : above 95
th

 percentile > 6.6% 0.2484 0.2107 0.2393 0.2488 -0.0201 -0.0591

Equity market: S&P 500  Index

Low : below 5
th

  percentile < 9.82% 0.1177 0.0292 0.0377 0.0177 0.0926 0.1596

High : above 95
th

 percentile > 29.53% 0.1859 0.0967 0.1351 0.1222 -0.2879 -0.6196

volatility level

Annualized mean returns of commodity portfolios

Long-short Long-only Annualized
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Table 8. Idiosyncratic volatility portfolios, traditional asset classes and unexpected inflation. 

The table reports pairwise Pearson correlation coefficients and p-values between quarterly returns of 
commodity portfolios, and those of two traditional asset classes, fixed income and equity. The last row 
reports correlations between quarterly returns and quarterly unexpected inflation; the latter is proxied by the 
residuals of an ARMA model fitted to CPI inflation.  

  

Correlation p -value Correlation p -value Correlation p -value Correlation p -value

US Govt Bond Index 0.1370 0.1327 -0.1105 0.1848 -0.0618 0.3084 -0.0286 0.4084

US 3m Cash Index 0.0976 0.2143 -0.0794 0.2600 -0.0336 0.3927 -0.0122 0.4607

S&P 500 Index 0.0632 0.3043 -0.1097 0.1866 -0.0100 0.4677 0.0183 0.4411

Russell 2000 Index 0.1032 0.2011 -0.0828 0.2509 -0.0400 0.3731 -0.0219 0.4297

Unexpected Inflation -0.2676 0.0137 -0.2370 0.0258 -0.2184 0.0368 -0.2239 0.0332

US Govt Bond Index 0.1363 0.1338 0.1129 0.1796 -0.1227 0.1594 -0.0854 0.2443

US 3m Cash Index -0.1387 0.1297 0.0515 0.3384 0.0802 0.2579 0.0501 0.3424

S&P 500 Index -0.1695 0.0835 -0.0527 0.3348 0.0195 0.4373 0.1255 0.1539

Russell 2000 Index -0.1058 0.1952 -0.1239 0.1571 -0.0211 0.4322 0.0557 0.3261

Unexpected Inflation 0.0777 0.2645 0.1268 0.1513 0.2306 0.0292 0.2008 0.0503

US Govt Bond Index 0.1400 0.1275 0.0868 0.2408 -0.1856 0.0649 -0.1390 0.1291

US 3m Cash Index -0.1344 0.1372 0.0534 0.3326 0.0957 0.2187 0.0875 0.2389

S&P 500 Index -0.0786 0.2620 -0.0953 0.2198 -0.0960 0.2180 0.0101 0.4673

Russell 2000 Index -0.1639 0.0908 -0.0657 0.2973 -0.0278 0.4110 0.0745 0.2730

Unexpected Inflation 0.0488 0.3465 0.0745 0.2730 0.2318 0.0286 0.1645 0.0901

US Govt Bond Index 0.1389 0.1293 0.1291 0.1471 -0.2659 0.0142 -0.1558 0.1022

US 3m Cash Index -0.1017 0.2046 0.0646 0.3003 0.0048 0.4846 -0.0091 0.4707

S&P 500 Index -0.1030 0.2017 -0.0232 0.4255 -0.0364 0.3841 0.0572 0.3217

Russell 2000 Index -0.1182 0.1685 -0.0603 0.3125 -0.0024 0.4923 0.0772 0.2658

Unexpected Inflation 0.1561 0.1019 0.1242 0.1564 0.2256 0.0322 0.2305 0.0293

Panel B: Long-only commodity portfolios

US Govt Bond Index -0.1751 0.0766 -0.3636 0.0012

US 3m Cash Index -0.1440 0.1207 -0.2674 0.0137

S&P 500 Index 0.0697 0.2862 0.3433 0.0021

Russell 2000 Index 0.0767 0.2671 0.3659 0.0011

Unexpected Inflation 0.4620 0.0000 0.4341 0.0002

IV-only

Panel A: Long-short commodity portfolios

R = 4,  H = 4 R = 4, H = 13 R = 4, H = 26 R = 4, H = 52

Mom-TS-IV

Mom-IV-TS

 IV-Mom-TS

S&P-GSCI Equally-weighted
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Figure 1. Future value of $1 invested in long-short commodity futures portfolios. 
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Figure 2. Performance of triple-sort strategies with alternative weight combinations.  
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Figure 3. Impact of transaction costs.  
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