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Abstract

This paper models relationships between trends in cause of death mortality rates for �ve
main causes of death (circulatory system, cancer, respiratory system, external causes, in-
fectious and parasitic diseases) across nine major countries (USA, Australia, Switzerland,
Japan, Singapore, Italy, Norway, Sweden, UK). Trends and relationships between mortal-
ity rates for causes of death are important since these trends are hidden in aggregate data.
Vector Error Correction Models (VECM) are used to model the common trends in causes
of death by country. A VECM is a multivariate dynamic system allowing for long-run
relationships between variables and common stochastic trends. The paper demonstrates
that mortality rates by causes of death have common stochastic trends in many countries
but these also di�er across countries highlighting the potential for geographical diversi�-
cation of mortality trends. The results con�rm long-run relationships exist between the
�ve main causes of death, indicating dependence between these competing risks. Cause of
death analysis provides valuable information that can improve the estimation of aggregate
mortality trends.

Keywords: causes of death, mortality trends, VECM
JEL Classi�cations: J11, C32, N30, G22, G23



1 Introduction

Models for trends in mortality rates for di�erent ages and sexes as well as for di�erent
countries are often based on the assumption that past trends in historical data will con-
tinue in the future. Mortality trends and variability re�ect many factors and these include
changes in the causes of deaths. These causes have di�ering age patterns and have shown
di�erent trends over recent years. At the same time, systematic changes in causes of death
have been common across the developing economies. Gaille and Sherris [2010] discuss the
factors driving mortality changes based on causes of death. Tuljapurkar et al. [2000] shows
how mortality declines have had common trends in the G7 countries although there is
evidence of variability in those trends. Booth et al. [2006] also demonstrate common
improvement trends based on the Lee-Carter model and variants of the model. Wilmoth
[1995] shows how taking into account causes of death can in�uence projected trends and
e�ectively highlights how cause of death trends are hidden in aggregate data. McNown
and Rogers [1992] forecast cause speci�c rates and Barugola and Maccheroni [2007] also
examine cause of death trends.

Vector Autoregressions as well as Vector Error Correction Models (VECM) have been
developed in econometrics to model multivariate dynamic systems including time depen-
dency between economic variables and allowing for stochastic trends. VECM include
common stochastic trends and long-run equilibrium relationships. These models should
provide a better understanding of trends in cause of death mortality rates across countries
and implications for modeling aggregate mortality rates. They provide information about
estimated long-run relationships between causes based on historical data.

As a result, the application of these models to cause of death mortality rates will
provide valuable information about the dependence between causes of death. Indeed,
dependence between competing risks are important in constructing aggregate mortality
rates. Usually an assumption is made that causes of death are independent. Cause
elimination models as well as cause-delay models developed by Manton et al. [1980] and
Jay Olshansky [1987] are two well-known examples. Tabeau et al. [1999] as well as Mc-
Nown and Rogers [1992] have considered the impact on projections of modeling mortality
rates by cause of death, assuming independent causes. Estimating the common trends
and relationships between the �ve main causes of death will improve understanding of
this dependence for use in competing risk models and constructing aggregate mortality
rate trends. This will better inform estimates of future mortality trends and variability.

The paper shows that although many countries have similar trends in cause of death
mortality rates, there are di�erences in groups of countries and in the form of the long-
run common stochastic trends. The paper begins with a brief description of VAR and
VECM in Section 2. Section 3 summarizes the data source and cause of death rates used
to estimate the models. Results from the model �tting and implications for modeling
mortality trends are then discussed in Section 4. Section 5 concludes.

2 VAR and VECM Models

Vector AutoRegressive (VAR) models are used to model vectors of variables that are
assumed stationary. They model expected changes allowing for lagged relationships be-
tween the variables and also for the correlations between the variables (Ndigwako Njenga
and Sherris [2009]). For mortality modeling, a vector of age-based mortality rates trans-
formed to stationary variables can be e�ectively modeled with a VAR. A pth-order vector

1



autoregression, denoted as VAR(p), based on p lags of the variables in the model is written
as

yt = c + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt, (1)

where the n variables at time t are denoted by the (n× 1) vector yt, c is a (n× 1) vector
of constants and Φi is a (n × n) matrix of autoregressive coe�cients for i = 1, 2, . . . , p.
The (n× 1) vector εt is a vector of white noise terms, with

E(εt) = 0, (2)

E(εtεl) =

{
Ω for t = l
0 for t 6= l,

(3)

where Ω is a symmetric positive de�nite matrix. Hamilton [1994] and Lütkepohl [2005]
are comprehensive references on these models.

A VAR(p) is suitable for (weakly) stationary processes with constant mean and vari-
ance. More generally, E(yt) and E(yty

′
t−j) are assumed independent of time t, but may

depend on the time di�erence j.
Often variables are non-stationary and may have a trend that can be removed by

taking di�erences. A variable (xt) that is non-stationary can be made stationary by
taking �rst di�erences

∇xt = xt − xt−1.
A variable that becomes stationary by taking di�erences has stochastic trends. Such a
variable is referred to as being integrated of order one, denoted I(1). If the process is
integrated of order one, di�erencing removes the non-stationarity and a VAR(p) can then
be �tted to the di�erenced data. However, di�erencing will lose any information about
long-run trends in the levels of the data. Even if the variables are non-stationary, they
may move together with common stochastic trends. These common trends are modeled
based on a long-run equilibrium relationship. A linear combination of these variables may
then exist such that the relation is stationary even if each variable is not.

Vector Error Correction Models (VECM) include common stochastic trends using
cointegration. If the n variables in the vector yt are all I(1) then, if they are cointegrated,
a long-run relationship given by

β1y1t + β2y2t + · · ·+ βnynt = 0

will hold on average in the long-run. Allowing for deviations from the long-run equilibrium
relationship this becomes

β1y1t + β2y2t + · · ·+ βnynt = zt, (4)

where zt is a stochastic variable representing that deviation. If a long-run equilibrium
exists, zt will be stationary. In this case these integrated variables are referred to as
cointegrated.

Equation (4) is written in vector and matrix notations as

β′yt = zt, (5)

with

β = (β1 β2 . . . βn)′, (6)

yt = (y1t y2t . . . ynt)
′.
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The vector β is referred to as a cointegrating vector. More than one cointegration relation
may exist, and thus there might be more than one cointegrating vector, each being linearly
independent from the others. In such a situation, the vector β of Equation (6) is a matrix
with each of its columns being a cointegrating vector. Thus

β = (β1 β2 . . . βr),

=


β11 β12 · · · β1r
β21 β22 · · · β2r
...

...
βn1 βn2 · · · βnr

 , (7)

with βi the ith cointegration relation, for i = 1, 2, . . . , r. The stationary vector β′yt

contains the r linearly independent cointegrated relations of the n variables under study.1

The cointegration relations are incorporated in VAR modeling using an alternative
VAR(p) representation (see, for example, Hamilton [1994] for a proof)

∇yt = c + ξ1∇yt−1 + ξ2∇yt−2 + · · ·+ ξp−1∇yt−p+1 + Πyt−1 + εt, (8)

where

Π = −(In −Φ1 − · · · −Φp);

= αβ′;

= matrix of rank r;

α = a (n× r) loading matrix ;

β = a (n× r) matrix containing the r vectors

forming a basis of the space of cointegration;

ξi = −(Φi+1 + · · ·+ Φp) for i = 1, . . . , p− 1.

Equation (8) is the Vector Error Correction Model of the cointegrated system. Each
element is stationary as the �rst di�erence of an I(1) process is stationary as are the
cointegration relations. The loading matrix α indicates which cointegrated relation has
an impact on which variable and to what extent. For example, the element αij measures
the e�ect of the cointegrated relation j (j = 1, . . . , r) on the variable i (i = 1, . . . , n).

The rank of the matrix Π gives the number of cointegrated relations among the
variables of the process. Three di�erent cases are possible:

Case 1: r = 0 There is no cointegrated relation. A VAR(p − 1) may be applied on the
�rst di�erence of the variables.

Case 2: r = n All linear combinations are stationary. Thus, all the variables in the
process are stationary.

Case 3: 0 < r < n There are r cointegrated relations, such that Π = αβ′. In this case,
the cointegrated relations are included in the error correction term.

Johansen's approach is used to estimate the number of cointegrated relations in a
process as well as the parameters in the matrices α, β, c and ξi for i = 1, 2, . . . , (p − 1)
in Equation (8) (Hamilton [1994] and Lütkepohl [2005]). The following steps are used to
estimate a VECM (Figure (1)):

1In this paper, we consider variables that are integrated of order one. In that special case, cointegrated
relations are necessarily stationary. For a more general framework, see Hamilton [1994] and Lütkepohl
[2005].
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Figure 1: Steps to follow in a VECM analysis
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1. Lag order of the VAR, p: Using selection criteria, such as Akaike's Information
Criteria (AIC), Hannan-Quinn Criterion (HQ), Schwarz Criterion (SC), Final Pre-
diction Error (FPE), the lag order of the VAR is selected.

2. Unit root tests on the variables considered: For a process to be stationary, the
characteristic polynomial of its VAR should have all its roots outside the complex
unit circle (Hamilton [1994] and Lütkepohl [2005]). Therefore, if this polynomial
has a root equal to unity, some or all the variables are integrated of order one and
there might be cointegrated relations among them. Unit root tests, such as the
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS), the Augmented Dickey-Fuller test
(ADF) or the Phillips-Perron test (PP), are useful tools in order to check for the
stationarity of the variables. KPSS tests the null hypothesis that the variable is
level or trend stationary, while ADF and PP test the null hypothesis of a unit root,
and thus, the null hypothesis of non-stationarity.

3. If the variables are stationary, denoted I(0), a VAR(p) is suitable. If the variables
are I(1), the Johansen's procedure is applied to �nd the number of cointegrated
relations. Two test statistics are commonly used in order to �nd the number of
cointegrated relations: the trace test and the maximum-eigenvalue test. The trace
test compares the null hypothesis that there are r cointegrated relations against
the alternative of n cointegrated relations, where n corresponds to the number of
variables under observation and r < n. The maximum-eigenvalue statistic tests the
null hypothesis of r cointegrated relations against the hypothesis of r+1 cointegrated
relations.

4. If the variables are I(1) and if there is no cointegration, a VAR(p− 1) on the �rst
di�erence is estimated. Otherwise, the appropriate VECM should be found.

5. Model validation: test for residual autocorrelations and non-normality.

3 Data

Mortality rates were determined as the number of persons for each age, sex, and country
who die in a particular year of a speci�ed cause, divided by the number of persons of that
age and sex in the country alive at the beginning of the year. Data were obtained from
the Mortality Database administered by the World Health Organization [2009] (WHO)
which contains demographic information, including the number of deaths according to
the underlying cause of death, for many countries over the last 50 years for �ve-year age
groups. Nine countries were chosen representing di�erent countries in the developed world
� North America, Europe, Asia and Oceania. Developing countries were not included since
the trends in these countries are expected to be di�erent to the developed economies and
the data less reliable. The nine major countries are USA (1950�2005), Australia (1950�
2003), Switzerland (1951�2005), Japan (1950�2006), Singapore (1963�2006), Italy (1951�
2002), Norway (1951�2005), Sweden (1951�2005), and UK (1950�2006). The �ve main
causes of death are diseases of the circulatory system, cancer, diseases of the respiratory
system, external causes, infectious and parasitic diseases.

Causes of death are de�ned by the International Classi�cation of Diseases (ICD),
which ensures consistencies between countries (Table (1(a))). In this study, only the
primary causes of death are considered. The ICD changed three times between 1950
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and 2006, from ICD-7 to ICD-10, in order to take into account changes in science and
technology and to re�ne the classi�cation. The raw data are then not directly comparable
for di�erent periods. To make them comparable, comparability ratios are computed in
order to smooth mortality rates across the classi�cations. The average of the mortality
rates over the last two years of a classi�cation is required to coincide with the average
of mortality rates over the �rst two years of the next classi�cation. A comparability
ratio is de�ned as the sum of the probabilities of dying in the �rst two years of a new
classi�cation divided by the sum of the probabilities of dying in the last two years of
the previous classi�cation. The dates at which the countries adopted a new classi�cation
are presented in Table (1(b)). In order to obtain data comparable over the complete
period under observation, the number of deaths in a new classi�cation is divided by
the comparability ratio linking this classi�cation with the previous one and previous
comparability ratios where appropriate. Most of these ratios take a value between 0.7
and 1.3. They are extremely close to one for cancer and the external causes of death.
The higher and smaller values are usually at young and older ages. Discontinuities in
the mortality rates at the junction points between two classi�cations have been removed
using these comparability ratios. The analysis in this paper is applied to these adjusted
mortality rates.

Table 1: International Classi�cation of Diseases

(a) Coding system

(b) Adoption of new classi�cations

The International Classi�cation of Diseases changed three times between 1950 and 2006. The aim of such

changes was to take into account progresses in science and technology as well as to re�ne the categories of

the diseases in order to have a more detailed description. With ICD-7, the death numbers were classi�ed

in 150 di�erent categories. In ICD-10, 11'468 categories and subcategories exist.
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4 Long-Run Trends for Causes of Death

To examine trends by cause of death, standardized aggregate country speci�c mortality
rate is used. To allow for changes in the age structure of the population, the aggregate
country speci�c mortality rate is denoted by q∗c,t,d,s, where

q∗c,t,d,s = d∗c,t,d,s/lc,LYc,s,

d∗c,t,d,s =
∑
x

(qx,c,t,d,s × lx,c,LYc,s), (9)

and

qx,c,t,d,s = probability of dying in country c, at time t, from cause of death d,

and for a person of sex s, and age x;

lx,c,LYc,s = number of persons of sex s, and age x, alive in country c,

at the beginning of year LYc;

lc,LYc,s =
∑
x

(lx,c,LYc,d,s);

= number of persons of sex s, alive in country c,

at the beginning of year LYc;

LYc = last year under observation for country c.

The population of the last year under observation is used as a base. Total number
of deaths in a particular year t is determined as if the population alive at the beginning
of that year was the same as the population of the last year of the data period. For
each country and cause q∗c,t,d,s refers to the country cause-speci�c mortality rate in year t,
assuming that the population is constant during the complete period under observation
and �xed at the level of the last observed year.

The VECM analysis is applied across the nine major countries for males and females.
Long-run equilibrium relationships are estimated between the �ve main causes of death.
The analysis is applied to each country separately and to the logarithm of q∗c,t,d,s.

4.1 Lag Order Selection

Out of the four tests performed, at least two of them, if not all of them, indicate a lag order
of one as optimal. A VAR(1) is the most suitable model for the aggregate standardized
log-mortality rates for causes of death in each of the nine analyzed countries.

4.2 Unit Root Tests

KPSS, ADF and PP tests are performed on the data. A cause of death is said stationary
when at least two out of the three tests accept it at a �ve percent signi�cance level. When
some doubts still remain, several models are tested and the one with non-autocorrelated
and normally distributed residuals is chosen. Table (2) summarizes the causes of death
that are stationary according to these tests. Across the countries most of the causes of
death log-mortality rates show evidence of non-stationarity and have stochastic trends.
The major exception is the diseases of the respiratory system. In the United States, Aus-
tralia, Italy (females only), Sweden (females) and United Kingdom (males), the �ve main
causes of death are non-stationary. In Switzerland (males only), Japan, Italy (males),
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Norway, Sweden (males) and United Kingdom (females), log-mortality rates for diseases
of the respiratory system are the only rates that are stationary. Singapore is di�erent
with log-mortality rates for infectious and parasitic diseases as the only stationary cause
of death. The shorter period under observation as well as the climate of this country
may explain this. Indeed, Singapore is the only country for which less than 50 years are
observed and is also the only country with a tropical weather.

Table 2: Stationarity and non-stationarity of the �ve main causes of death in nine coun-
tries

UR = Unit root, that is a non-stationary variable; S = Stationary variable; I&P = Infectious and parasitic
diseases.

This table describes the stationarity of the log-mortality rate log q∗c,t,d,s. A variable is said to be stationary

when at least two out of the three tests (that is KPSS, ADF and PP) do not reject it at �ve percent

signi�cance level or when it provides the best model according to the model validation criteria.

4.3 Long-Run Equilibrium Relationships

The number of estimated cointegration relations is summarized in Table (3) based on trace
and maximum-eigenvalue tests of the Johansen's procedure. These two tests assess the
number of long-run equilibrium relationships among the non-stationary causes of death.
Several model assumptions are tested and the most e�cient one according to the model
validation criteria (non-autocorrelated and normally distributed residuals) is shown. In
general there is at least one cointegrating relationship between the cause of death log-
mortality rates in each country showing that these rates have changed with common
stochastic trends. These long-run equilibrium relationships determine how changes in
causes of death move relative to each other.

8



Table 3: Number of cointegrated relations among the �ve main causes of death in nine
countries

Number of cointegrated relations according to the trace and maximum-eigenvalue tests of the Johansen's

procedure at a �ve percent signi�cance level, except for females in Australia and in United Kingdom as

one cointegrated relation is accepted at a 2.5% signi�cance level. For females in Singapore, Norway and

Sweden, several models are tested and the table reports the best model according to the model validation

criteria.
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4.4 Results: Fitted VECM for Causes of Death

Parameters for the �tted VECM for each country and both sexes, based on the stationarity
assumptions in Table (2) and the number of cointegrated relations shown in Table (3)
are given in Tables (4), (5) and (6). For all these Tables the VECM is estimated for
each country, using Johansen's procedure. The variables used in the VECM are the log-
mortality rates for the �ve main causes of death of the country. Males in Singapore as
well as females in Switzerland are not represented in these tables since no cointegration
relation is found to exist. VAR models were estimated and are discussed later.

To illustrate the application of these tables, the estimated VECM for log-mortality
rates by cause of death for males in the United States can be written

∆CircSystt
∆Cancert

∆RespSystt
∆ExtCausest

∆I&Pt

 =


0.43874
0.46001
−0.48234
−0.15794
−4.20466

 +


0.00736 0.00606
0.00700 0.00454
0.00124 0.02903
−0.00317 −0.00497
−0.04774 0.02163


×

[
1.03933 −2.34554 −0.41691 −6.95797 −2.15630
−4.37272 −11.39015 8.37977 5.60970 1.64404

]

×


CircSystt−1
Cancert−1

RespSystt−1
ExtCausest−1

I&Pt−1

 . (10)

Common features between countries are described in Tables (7) and (8).
For countries where the log-mortality rates for diseases of the respiratory system are

stationary, there are two patterns in the relationships for the common stochastic trends
(Table (7)). Females in Japan, males in Italy, Norway and Sweden all show similar relative
changes. Diseases of the circulatory system, cancer and infectious and parasitic diseases
have coe�cients with the same sign, with the coe�cient for external causes of death
having an opposite sign. In these four cases, the long-run stochastic trends are such that
decreases (increases) in the log-mortality rates of the circulatory system are associated
with either increases (decreases) in log-mortality rates for cancer or the infectious and
parasitic diseases, or decreases (increases) in log-mortality rates for external causes of
death, or a combination of these impacts, so that overall changes are stationary. For
males in Switzerland and Japan as well as females in United Kingdom, diseases of the
circulatory system and infectious and parasitic diseases have a coe�cient with the same
sign, while the coe�cient for cancer and external causes of death is of opposite sign. As
log-mortality rates for diseases of the circulatory system decrease (increase), either log-
mortality rates for cancer or external causes of death decrease (increase), or log-mortality
rates for infectious and parasitic diseases increase (decrease) for the stochastic trends to
remain in equilibrium.

Countries where all causes of death are non-stationary show two patterns in the re-
lationships for the common stochastic trends for males shown in Table (8). There is
no common relationship for females. The two long-run equilibrium patterns for males
in United Kingdom are similar to one of the two relations for Australia. A decrease
(increase) in the log-mortality rates of diseases of the circulatory system in these two
countries implies a decrease (increase) in log-mortality rates in cancer, in the diseases of
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Table 4: Constants included in a VECM based on the �ve main causes of death

I&P = Infectious and parasitic diseases.

The constants included in the models are given in the line corresponding to the country. For example,

0.44 is the constant for log-mortality rates for diseases of the circulatory system for males in the United

States, while -4.2 is for infectious and parasitic diseases.

11



Table 5: Cointegrated relations between the �ve main causes of death

I&P = Infectious and parasitic diseases.
These results show, for example that the VECM for females in the United States has an estimated
long-run equilibrium relationship given by

−2.47× CircSystt + 18.80× Cancert − 0.11×RespSystt + 6.43× ExtCausest − 0.24× I&Pt = zt,

where zt is a stationary variable.
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Table 6: Loadings of a VECM based on the �ve main causes of death

I&P = Infectious and parasitic diseases.

To explain, log-mortality rates of diseases of the circulatory system for males in the United States are

a�ected by the �rst cointegrated relation with a factor of 0.00736, while the second cointegrated relation

has an impact of 0.00606.
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Table 7: Long-run equilibrium relationships in countries with similar experience, the
diseases of the respiratory system being stationary

Cointegrated relations for speci�ed countries under study (all the cointegrated relations are presented in
Table (5)). To illustrate the meaning of the table, a VECM for log-mortality rates by cause of males in
Switzerland has one long-run equilibrium relationship (cointegrated relation), written as

−14.90× CircSystt + 17.52× Cancert + 17.78× ExtCausest − 0.64× I&Pt = zt,

where zt is a stationary variable.

Table 8: Long-run equilibrium relationships in countries with similar experience, all causes
of death being non-stationary, males

Cointegrated relations for speci�ed countries under study (all the cointegrated relations are presented in
Table (5)). To illustrate the meaning of the table, a VECM for log-mortality rates by cause of males in
the United States has one long-run equilibrium relationship (cointegrated relation), written as

1.04× CircSystt − 2.35× Cancert − 0.42×RespSyst− 6.96× ExtCausest − 2.16× I&Pt = zt,

where zt is a stationary variable.
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the respiratory system or in the infectious and parasitic diseases, or an increase (decrease)
in log-mortality rates of external causes of death. The other cointegrating relation in Ta-
ble (8) for Australia is similar to that for the United States. A decrease (increase) in
the log-mortality rate of diseases of the circulatory system is associated with a decrease
(increase) in log-mortality rates of either or a combination of the four remaining causes.

These relationships re�ect the historical data and the relative changes in cause-speci�c
mortality. Despite these similarities, there is signi�cant variation in trends between these
causes of death mortality rates across these countries.

4.5 Singapore and Switzerland: VAR Models

For males in Singapore and females in Switzerland there are no common stochastic trends
found in the log-mortality rates for the causes of death. In both cases VAR models are
�tted. For males in Singapore, Table (9) shows the estimated VAR �tted to the �rst
di�erence of the non-stationary variables, that is on the �rst di�erence of log-mortality
rates of diseases of the circulatory system, cancer, diseases of the respiratory system and
external causes of death. Infectious and parasitic diseases are stationary and thus, no
di�erencing is required. Table (10) shows the VAR model for log-mortality rates for
females in Switzerland. The VAR is �tted to the �rst di�erence of the non-stationary
variables, that is on the �rst di�erence of log-mortality rates for diseases of the circulatory
system, external causes of death and infectious and parasitic diseases. Cancer and diseases
of the respiratory system are stationary.

4.6 Model Validation

The residuals of the model are tested for normality as well as any remaining autocor-
relation. Tables (11) and (12) summarize the signi�cance of the tests for males and
females respectively. The Portmanteau test is a test for the overall signi�cance of the
residual autocorrelations up to lag l. The Portmanteau statistic has an approximate
asymptotic Chi-square distribution for large values of l. The test has a null hypothesis of
no-autocorrelation among the residuals up to l = 15 and l = 25 lags. The statistic used
is the Portmanteau statistic adjusted for small sample.2 Tests for normality are based on
the third and fourth central moments (skewness and kurtosis) of a normal distribution.3

The test statistic labeled both in both tables is a joint test of skewness and kurtosis.
The null hypothesis of normality as well as the null hypothesis of no-autocorrelation

up to 15 or 25 lags are, in most cases, accepted at a �ve percent signi�cance level. For
males in Italy as well as females in Singapore and United Kingdom, the kurtosis test and
the joint test of the kurtosis and skewness reject the null hypothesis of normality. Despite
this, the estimated VECM capture the trends in the causes of death data and provide a
good �t based on the model assumptions.

5 Conclusion

Mortality rates of many countries show similar trends by age and by cause of death, even
if these causes of death have shown di�ering patterns of improvement and have di�erential

2As in Lütkepohl [2005]
3For a detailed description of these tests, see Lütkepohl [2005].
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Table 9: Autoregressive coe�cients as well as the trend used in the VAR estimated for
males in Singapore

The table reads as follows: The �rst di�erence of log-mortality due to cancer at time t − 1 impacts the
�rst di�erence of log-mortality due do the diseases of the circulatory system at time t with coe�cient
0.149. The diseases of the circulatory system are a�ected by the �ve causes as follows

∇CircSystt = − 0.46283×∇CircSystt−1 + 0.14898×∇Cancert−1 + 0.13283×∇RespSystt−1

+ 0.13739×∇ExtCausest−1 − 0.00562× I&Pt−1 − 0.00262× t.
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Table 10: Autoregressive coe�cients, the constant as well as the trend for the VAR
estimated for females in Switzerland

The table reads as follows: Log-mortality due to cancer at time t − 1 impacts the �rst di�erence of
log-mortality due do the diseases of the circulatory system at time t with coe�cient -1.42. Diseases of
the circulatory system are related to the �ve causes as follows

∇CircSystt = + 0.14614×∇CircSystt−1 − 1.42405× Cancert−1 − 0.09331×RespSystt−1

+ 0.17695×∇ExtCausest−1 + 0.02529×∇I&Pt−1 − 0.00817× t− 8.96603.
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Table 11: Tests on residuals of the �tted VECM on causes of death, males

* The null hypothesis is accepted at a one percent signi�cance level.
** The null hypothesis is accepted at a 2.5% signi�cance level.
*** The null hypothesis is accepted at a �ve percent signi�cance level.
� The null hypothesis is rejected.

The Portmanteau statistic tests the null hypothesis of no-autocorrelation among the residuals up to 15

or 25 lags. The normality tests for the residuals are based on the skewness statistic, the kurtosis statistic

and a combination of these.
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Table 12: Tests on residuals of the �tted VECM on causes of death, females

* The null hypothesis is accepted at a one percent signi�cance level.
** The null hypothesis is accepted at a 2.5% signi�cance level.
*** The null hypothesis is accepted at a �ve percent signi�cance level.
� The null hypothesis is rejected.

The Portmanteau statistic tests the null hypothesis of no-autocorrelation among the residuals up to 15

or 25 lags. The normality tests for the residuals are based on the skewness statistic, the kurtosis statistic

and a combination of these.
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impacts by age. Common international changes such as development of national health
care systems, launch of smoking control measures and other similar health policy changes
are impacting mortality rates leading to common trends across countries. As a result,
longevity and mortality risk across countries and within a country across causes of death
contains common stochastic trends. It is important to incorporate these common trends
in longevity and mortality risk models.

By considering aggregate cause of death mortality rates and using models with long-
run common stochastic trends, it is possible to estimate equilibrium relationships arising
from di�erent causes of death. Comparing these trends across countries allows to identify
countries with similar trends. This study uses a multivariate dynamic systems to model
log-mortality rates for causes across nine countries. VECM are found to �t accurately
the historical data and the dynamics of cause-speci�c mortality rates.

The results show that long-run equilibrium relationships exist between the mortality
rates for the �ve main causes of death. This con�rms the nature of dependence between
these competing risks. The often made assumption of independence between mortality
rates for causes of deaths is shown not to hold as these rates have common stochastic
trends at a country level. Lon-run equilibrium relationships should not be disregarded in
any analysis considering the causes of death and should be included in new forecasting
mortality models.

The study also demonstrates that groups of countries have similar experience. Females
in Japan, males in Italy, Norway and Sweden show similar relative past changes. Males
in Switzerland and Japan have similar long-run equilibrium relationships as females in
United Kingdom. Males in Australia share similar pattern with males in United States
as well as with males in United Kingdom. This information is of primary importance as
it highlights the potential for geographical diversi�cation of mortality risk.
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