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1 Introduction

The Black and Scholes (1973) option pricing formula (BS henceforth) has a widespread acceptance

among practitioners and academics. However, it is well known that the model is not accurate enough

for both deep in-the-money and out-of-the money options. This phenomenon is commonly referred as

volatility skew or smile. These misspricing patterns are known to be a result of one of the overidealized

assumptions used to derive the formula, namely, the hypothesis of normality for the distribution of

log-prices. Actually, daily and weekly returns of the great majority of variables in financial markets

present a positive excess of kurtosis (Bouchaud and Potters 2000). This fact implies that extreme events

in market variables are much more frequent compared to predictions based on a Gaussian distribution.

Usually, some observations in daily series are over 10 standard deviations of the mean. A Gaussian

distribution would assign to this phenomenon a probability of order 10−23, while in many cases the

observed empirical probability can be of the order of 10−4.

An early improvement to overcome this pricing bias is the semi–nonparametric approximation ini-

tially proposed by Jarrow and Rudd (1982). Specifically, they derive an option pricing formula con-

sidering an Edgeworth expansion for the log-normal probability density function of stock prices. This

approach has been slightly modified in Corrado and Su (1996a) and Corrado and Su (1997b), which

have considered a Gram-Charlier expansion to model the distribution of stock log-returns. These semi–

nonparametric approximations rely on a moment expansion of the BS formula to account for non-normal

skewness and kurtosis. Nevertheless, both approximations share the drawback of yielding negative den-

sity function values for certain parameter ranges. Jondeau and Rockinger (2001) propose the restriction

of the parameter-range to ensure positive density functions. Additionally, León et al. (2009) have re-

cently proposed the application of semi–nonparametric distributions, considered to be an expansion of

any density function. Although the above mentioned approximations keep the analytical flexibility of

the Edgeworth-Gram-Charlier moment expansion and solve the negativeness problem, also inherit the

strong constraint to describe high degrees of kurtosis and skewness. Actually, León et al. (2009) have

demonstrated that in the absence of skewness the maximum kurtosis these expansions can reach is eight,

which turns out to be very restrictive.

In this article we propose another expansion-based distribution function. Specifically, we introduce

a “sample transmutation” of the Normal distribution through a cubic polynomial. The essence of dis-

tribution transmutations is well explained in Shaw and Buckley (2007). Following this work, a “sample

transmutation” consists on a deterministic function that transmutes samples of a “base” distribution

(the Gaussian in our case) to another distribution. An early example of a polynomial “sample transmu-

tation” of the Normal distribution is the Cornish-Fisher expansion (CFE henceforth), initially proposed

by Cornish and Fisher (1937) as an approximation method to estimate quantiles for distributions from

known moments.1 We explain the similarities between both approaches and this is why we call our

distribution as Cornish-Fisher distribution (CFD henceforth).

In the empirical applications, we concentrate only on cubic polynomials because bearing the same

analytical tractability characteristic of the Edgeworth based density functions, it extends their modeling

flexibility in terms of the covered range of skewness-kurtosis possibilities. Moreover, the inverse of a

cubic polynomial is available in closed-form. Thus, we can compute the density function analytically,

without the need of using numerical methods to invert the transmutation. Moreover, we also provide

closed-form formulas for the moments of the CFD. Additionally, we present three different methods for

1This expansion has been applied in finance, for example, in delta-gamma approximations for VaR calculation of

portfolios containing options, to approximate the percentile of the profit and loss distribution in terms of the sensitivities

of the options to underlying movements (see Hull 2004, Ch. 16).
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estimating the CFD parameters in a model where returns are identically distributed as a CFD. We also

analyze the implications for risk management by comparison of CFE and CFD quantiles in the left tail

of the distribution. We obtain significant differences which suppose biased capital requirements when

using the Value-at-Risk.

We derive an option pricing model that accounts for skewness and kurtosis, obtaining closed-form

expressions for both the price of plain vanilla options and the corresponding “Greeks”. Finally, we

present an empirical application with S&P 500 options data. The empirical results demonstrate that,

first, the fitted implied density function sometimes gives values for the kurtosis coefficient as high as 20

suggesting that Gram-Charlier-based methods are too restrictive in terms of skewness-kurtosis coverage

and, second, that it also performs better than other models that allow for asymmetries and positive

excess of kurtosis.

The rest of the article is structured as follows. In Section 2, we analyze the statistical properties of

the CFD. We discuss in Section 3 the implications for risk management. Section 4 is devoted to the

estimation of the CFD parameters. Section 6 deals with the derivation of the option valuation formula

and its ”Greeks”. The empirical application of the option pricing model is conducted in Section 7.

Finally, Section 8 presents the conclusions.

2 Statistical characterization of Cornish-Fisher Distributions

In order to introduce our distribution, we initially present the CFE, as defined by Cornish and Fisher

(1937). Then we show the relation of CFE with polynomial “sample transmutations”. The last part of

this section deals with the statistical properties of the new distribution.

2.1 Cornish-Fisher Expansions

A CFE approximates an unknown quantile of a distribution function F in terms of the quantiles of the

Gaussian distribution and the cumulants of the distribution F . To be more explicit, let R be a quantile

of a non-gaussian variable which we want to approximate and X the quantile of a Gaussian variable.

Then, the first terms of the CFE become:

R = m+ �

(

X +
1

6

�3

�3
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1
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where m, � and �i stand for the mean, standard deviation and the i-th order cumulant of the variable

R respectively. Equation (1) shows the quantile R as a polynomial expansion of the gaussian quantile

X. Regrouping the different terms of equation (1) we can appreciate the polynomial coefficients:
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Formally, the CFE can be understood as a polynomial expansion of the quantile R in terms of the

quantile X, where the parameters ai depend on the cumulants of the distribution F :

R = a0 + a1X + a2X
2 + a3X

3 + . . . (3)

Actually, in order to obtain the CFE, as it is presented in many good references on statistics (for
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instance, Johnson and Kotz 1972), one has to re-group the infinite series of equation (3) by a criteria

motivated by the central limit theorem. Consider a variable n that measures the approximation degree

to the validity of the central limit theorem (n can be seen as a “sample size”), so that, if variable n

tends to infinity then R becomes a Gaussian variable. In terms of this variable n the expansion can be

written as:

R = X +

∞∑

k=1

n−k/2�k(X) (4)

where �k(X) is the collection of all terms corresponding to the k-th power of n−1/2, and can be written

in terms of the cumulants �k of the distribution function R.

Although CFEs are usually applied to approximate theoretically determined distributions (with

known moments), they can be used to model random variables as they are directly related to the

Edgeworth form of the distribution.2 Edgeworth (and Gram-Charlier) distributions belong to a family

of distributions which provide an explicit relationship between the quantiles of the distribution and the

moments or cumulants (see Kendall et al. 1994). In practice, it is unusual to use moments higher than

the fourth one when fitting an Edgeworth (or Gram-Charlier) expansion. This is mainly because the

possibility of negative density values becomes more probable as higher terms are added, but also because

empirical estimation of higher moments is usually highly inaccurate.

With the aim of obtaining a semi–nonparametric distribution, we truncate equation (3) up to orderm

and consider the coefficients ai as the fitting parameters of the distribution. With this parametrization,

equation (3) can be rewritten as:

R =
m∑

i=0

aiX
i ≡ Qm(X) (5)

Following Shaw and Buckley (2007), equation (5) establish the variable R as polynomial “sample trans-

mutation” of the variable X. Formally, given a base distribution Φ(x) (the Gaussian in our case) and

another distribution F (x), a sample transmutation mapping Ts (the polynomial in our distribution) is

defined by the identity

F−1 (U) = Ts

(
Φ−1(U)

)
, i.e., Ts(z) = F−1 (Φ(z)) = QF (Φ(z)) (6)

where 0 ≤ U ≤ 1. That is, given the quantile function of the base distribution, Φ, we can obtain the

quantiles of the new distribution, QF , applying the function Ts.

In other words, instead of using the first terms of the CFE to model the distribution of returns as a

function of m, �, �3 and �4, we will consider a direct parametrization of the first coefficients, {ai}mi=0.

Therefore, since the CFE is essentially a polynomial sample transmutation (see equation (2)), from now

a variable R that is a m-th order polynomial sample transmutation of the Gaussian variable will be

referred as a m-th order Cornish-Fisher Distribution (CFDm) or a m-th order Cornish-Fisher density

(CFdm).

Basically, this new parametrization can be understood as a summation of the series made in a

different and more efficient order. Comparing equations (2) and (5) we can find the expressions for the

coefficients ai corresponding to a third-order CFE. The main point here is that if we take more terms in

the expansion of equation (4) we would find that higher powers of X appear, like X4 or X5, but also,

and more importantly, more factors containing higher order cumulants must be added in the coefficients

2Edgeworth and Gram-Charlier distributions have been implemented in very different fields to model financial returns.

In the field of option pricing we can cite the works of Jarrow and Rudd (1982), Corrado and Su (1997b), Corrado and Su

(1996a), Capelle-Blancard et al. (2001) and Jurczenko et al. (2002).
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{ai}3i=0. Thus, taking more terms in the above expansion is required to improve the accuracy of the first

coefficients. However, if we parametrize directly these first coefficients, which interestingly are supposed

to be more important than the higher order ones, we will be gaining efficiency in terms of the number

of parameters used to model the distribution.

Other appealing feature of the CFD is the ease of simulation. The following procedure can be

considered. First, we simulate standard Gaussian variables X, and second, we apply equation (5),

R = Qm(X), to each simulated observation. The so obtained variable R becomes Cornish-Fisher

distributed. In most cases, the function Q (X) is not analytical, because it involves the inverse of the

considered distribution function, Q(X) = F−1 [Φ(X)]. In these situations the calculation of Q (X) will

add more time process to the already “expensive” Monte Carlo method. For instance, Hull and White

(1998) use a density function of a mixture of two gaussians which presents the disadvantage of being a

transcendent equation, so that it is not possible to obtain the inverse function analytically. Nonetheless,

this is not the case of the CFD, given that the function Q(X) is directly modeled as a third-order

polynomial.

2.2 Statistical properties of Cornish-Fisher Distributions

Considering thatX is the standard Gaussian distribution with distribution function Φ (X) = 1√
2�

∫X

−∞ e−
1

2
t2dt,

the distribution function of a Cornish-Fisher variable, R, defined by equation (5), will be denoted by

CFDm(R) and can be expressed in the following way:

CFDm (R) = Φ
[
Q−1

m (R)
]
=

1√
2�

∫ Q−1

m
(R)

−∞
e−

1

2
t2dt, (7)

where Qm is the m-th order polynomial and Q−1
m is the inverse function of Qm.3 Furthermore, derivating

the later expression with respect to R, one can easily find that the density function of a Cornish-Fisher

variable, denoted by CFdm(R), is given by:

CFdm(R) =
d
[
Q−1

m (R)
]

dR

1√
2�

e−
1

2 [Q
−1

m
(R)]

2

(8)

This work concentrates on a third-order polynomial, since it is sufficiently appropriate to fit experimental

data, and it is the first non-trivial approximation useful for financial applications, as we will see in

Section 4.4 On the other hand, the analyticity of the inverse of a third-order polynomial is also specially

interesting, since it becomes the basic ingredient for the distribution and density functions (equations

(7) and (8)). The explicit form of the third-order CFD function is given in Appendix A. Although these

formulas may seem something cumbersome, they are fully analytical and they do not require of numeric

procedures like Newton-Raphson to obtain Q−1(R) and its derivative, and they can be easily storaged

in a program routine or spreadsheet.

The parameters {ai}3i=0 of the CFD3 have to be restricted in order to ensure that the density

is properly defined. Considering the expression for CFd in equation (8) we can see that to be well

defined it is sufficient and necessary to impose the existence and uniqueness of Q−1. For a third-order

polynomial this condition is equivalent to have a strictly increasing polynomial Q (this also holds for

3Q−1 will be always defined for any non decreasing continuous function Q.
4As we are interested in modeling financial returns, we can not consider quadratic polynomials. These returns are

variables defined over an infinite support, which restricts the choose of polynomials to those of odd order, given that with

an even-order polynomial we would map the real line corresponding to the support of the Gaussian variable X onto the

positive real segment instead of the entire real line.
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any even polynomial). In the following Proposition we will find the conditions on the parameters ai

which guarantee the existence of a third-order CFD. The proof of this and the following Propositions

are presented in Appendix B.

Proposition 1 Let CFd3(R) be a third-order Cornish-Fisher density defined by equation (8), with

coefficients {ai}3i=0, then the sufficient and necessary conditions on the coefficients to guarantee the

existence of the CFd3(R) are:

a3 > 0 , a1 > 0 , −
√
3a3a1 < a2 <

√
3a1a3. (9)

Therefore, a third-order CFD becomes completely defined by equations (5), (8) and (9). Notice that

third-order CFDs nest the well known Gaussian distribution (a3 = a2 = 0), the �2 distribution (a1 =

a3 = 0) and the non-central �2 (a3 = 0).

Proposition 2 Let CFdm(R) be a m-th order Cornish-Fisher density defined by equation (8) for a

random variable R, then non-centered r-tℎ order moments, �′
r, are given by:

�′
r = E [Rr] =

[

Q

(
∂

∂J

)]r

e
1

2
J2

⏐
⏐
⏐
⏐
⏐
J=0

(10)

where Q
(

∂
∂J

)
=
∑m

i=1 ai
∂i

∂Ji is a differential operator.

It is straightforward to derive the first four non-centered moments of a third-order CFD:

�′
1 = a2 + a0

�′
2 = 15a23 + a20 + 2a2a0 + 6a3a1 + a21 + 3a22

�′
3 = 9a2a

2
1 + 15a32 + a30 + 45a23a0 + 3a21a0 + 315a23a2 + 9a22a0 + 18a3a1a0 + 90a3a2a1 + 3a2a

2
0

�′
4 = 105a42 + 60a0a

3
2 + 18a20a

2
2 + 4a30a2 + 3a41 + 10 395a43 + 6a20a

2
1 + 1260a1a

2
2a3 + 90a20a

2
3 +

36a0a
2
1a2 + 3780a1a

3
3 + 36a20a1a3 + 60a31a3 + 90a22a

2
1 + 630a21a

2
3 + 1260a0a2a

2
3 +

5670a22a
2
3 + 360a0a1a2a3 + a40

According to these expressions, the centered moments, �r, are given by:

�1 = 0

�2 = 6a3a1 + 15a23 + 2a22 + a21

�3 = 72a3a2a1 + 8a32 + 270a23a2 + 6a2a
2
1

�4 = 10395a43 + 60a42 + 3a41 + 60a3a
3
1 + 3780a33a1 + 936a3a

2
2a1 + 4500a23a

2
2 + 630a23a

2
1 + 60a22a

2
1

Thus, skewness and kurtosis coefficients become:

� =
72a3a2a1 + 8a32 + 270a23a2 + 6a2a

2
1

(6a3a1 + 15a23 + 2a22 + a21)
3/2

(11)

� =
10395a43 + 60a42 + 3a41 + 60a3a

3
1 + 3780a33a1 + 936a3a

2
2a1 + 4500a23a

2
2 + 630a23a

2
1 + 60a22a

2
1

(6a3a1 + 15a23 + 2a22 + a21)
2 (12)

The above equations can be used to characterize the standardized third-order CFD.
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Proposition 3 Let CFd3(R) be a third-order Cornish-Fisher density function defined by equation (8)

for the random variable R, with coefficients {ai}3i=0. Then, one can define a standardized variable R′

with zero mean and unit variance imposing

a0 = −a2 , a1 =
√

1− 6a23 − 2a22 − 3a3 (13)

with the following conditions on a2 and a3 to guarantee the existence of the CFd3(R):

0 < a3 <
1√
15

(14)

−
√

3a3

(√

21a23 + 1− 6a3

)

< a2 <

√

3a3

(√

21a23 + 1− 6a3

)

(15)

Therefore, the standardized third-order CFD is completely defined by equations (5), (8), (13), (14) and

(15). The left panel on Figure 1 shows the validity region for (a2, a3) pairs according to equations (14)

and (15). On the other hand, the right panel on Figure 1 exhibits the corresponding region of skewness

and kurtosis. Although the allowed parameter range is bounded, with just two shape parameters, a2

and a3, we are able to capture a kurtosis as high as 45 and a skewness up to a value of ±4. We also plot

the equivalent expanded region for two different semi–nonparametric distributions of the same order,

the Gram-Charlier distribution of Jondeau and Rockinger (2001), and the semi–nonparametric one of

León et al. (2009), as well as the boundary limit for any distribution.5 According to this Figure, the

extended region in the skewness-kurtosis plane within the CFD model is much wider than for the Gram-

Charlier distribution or the semi–nonparametric one. Therefore, the CFD becomes much more flexible

than other semi–nonparametric approximations.

To better understand the behaviour of the skewness and kurtosis, on one hand, Figure 2 exhibits

in the left graphic the skewness surface of the standardized CFD as a function of (a2, a3). The right

graphic shows level curves of the skewness surface for different values of a3. An interesting finding is

that, given a value of a3, � is linear with a2. Moreover, the skewness lines do not have intercept since

all of them share the origin, and the slope of the skewness lines depends on a3: the larger a3, the higher

the slope. On the other hand, Figure 3 displays the kurtosis surface (left graphic) showing its convexity

and the “spoon” shape. Moreover, � is symmetric respect to a2, that is, �(a2, a3) = �(−a2, a3). The

right-side graphic shows the level curves for different values of a2. We observe that given a2, � is a

quadratic function of a3, and the larger the absolute value of a2, the higher the slope of the parabola.

Potential users of the CFD usually will need to find which parameters (a2, a3) match certain values

of (�, �), that is, just the inverse of equations (11) and (12). Although we cannot obtain the analytical

inverse of those equations we propose two solutions.

First, Table 1 shows the tabulation of (a2, a3) of the standardized third-order CFD for certain

values for � and � in the horizontal and vertical axes respectively. Every element (i, j) of this table is

the pair
(
a2

a3

)
that implies the values for the kurtosis and skewness of �i and �j . For instance, the pair

(a2, a3) which generates the values (�, �) = (2, 24) is (0.1455, 0.1719). To obtain the parameters for non

tabulated values of � and � we can use a linear interpolation between the nearest values. For example,

for (�, �) = (1.75, 19) we obtain by interpolation (a2, a3) = (0.1390, 0.1509). The true skewness and

kurtosis for these parameters are (1.764, 19.094) which are a good approximation to the initially desired

values. For negative values of �, we just have to find the parameters as if � were positive, and then

change the sign of a2.

5It is easy to see that for every pair � = �3/�
3/2
2

and � = �4/�2

2
− 3, the inequality � ≥ �2 − 2 must hold.
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Secondly, we can also proceed numerically minimizing the following distance:

min
a2, a3

(
�(a2, a3)− �̄

)2
+ (�(a2, a3)− �̄)

2
(16)

where �(a2, a3) and �(a2, a3) stand for equations (11) and (12) respectively and �̄ and �̄ are the desired

levels of skewness and kurtosis. This optimization converges quickly. For instance, to compute all cases

in Table 1 (18 × 10 = 180 optimizations) with a tolerance of 10−5 a common laptop only takes 1.92

seconds.6

The next proposition characterizes the unimodality of the CFD, which seems a serious restriction

of the CFD respect to other expansions. However, as we will see in the next sections, the empirical

performance of the CFD is superior when fitting return data and the CFD option pricing model performs

better than other approaches.

Proposition 4 Third-order Cornish-Fisher Densities are unimodal.

Figure 4 presents some possible shapes for standardized third-order CFds showing their flexibility

to describe different degrees of skewness and kurtosis. Figure 5 shows the detail of the tails of the

distribution in a logarithmic scale. The solid line represents the relative frequencies (histogram) of daily

returns of the YEN/USD exchange rate for the period 01/04/1988 - 08/15/1997. It can be observed

that the CFD (dashed line)7 presents an almost linear behaviour in the tails, as it corresponds to an

exponential distribution, and the rate of decrease is much lower than in the Gaussian approximation

(parabolic dotted line), so that a much higher weight can be assigned to the tails.

The following transformation rule allows us to define a reparametrization of the third-order CFD in

terms of the mean, �, the volatility, �, and the parameters a2 and a3.

Proposition 5 Let R we a m-th order CFD distributed variable with parameters {ai}mi=1. Consider the

variable Z = m + �R, then, the new variable Z is also distributed as a CFD with parameters {a′i}mi=0

given by a′i = �ai and a′0 = �a0 +m.

With this transformation rule we can re-define the function Q(X) and, therefore, the Cornish-Fisher

Density, using a new parametrization set, namely, m, �, a2 and a3:

R = �a3X
3 + �a2X

2 + �

(√

1− 6a23 − 3a22 − 3a3

)

X +m− �a2 (17)

This specification will be of special interest when modeling the dynamic behaviour of the conditional

mean and volatility, as both parameters appear explicitly in the definition of the density function.

2.3 Relation of CFD with QQ-Plots

One can interpret equation (5) as a percentile-percentile relation between a fictitious Gaussian variable,

X, and the non-normal variable, R, that we want to describe. We can consider that the value of the

variable X that we are fixing is the one that corresponds to a certain percentile � of the distribution R.

In this way, equation (5) relates percentiles of R with percentiles of the normal distribution. Therefore,

in order to estimate the parameters of the function Q(X) in equation (5), it will be reasonable to fit

the function that relates the value of the percentile � of the empirical distribution, in the ordered axis,

with the value of the same percentile of the standard normal distribution, in the abscissas axis.

6We have considered all (�, �) combinations despite some of them do not guarantee well-behaved densities.
7Section 4.1 provides three different methods to estimate the parameters of the CFD.
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As it is well-known, this representation is commonly denominated QQ-Plot and, therefore, the CFD

function will be an appropriate model for financial series if they present a normal QQ-Plot polynomially

shaped, which is generally the case, as we will see in the following example. In Figure 6 we present

the QQ-Plot (left panel) for a standardized daily return series of the YEN/USD exchange rate for the

period 04/01/1988-15/08/1997 versus a standard normal distribution. Crosses represent experimental

data and the solid line corresponds to the fit of a third-order polynomial by least squares. As can be

observed, it is remarkable the non-linear shape of the QQ-Plot that discards gaussianity and the high

fitting quality obtained with a third-order polynomial. The right-side graphic exhibits the corresponding

histogram, along with the fitting of a third-order CFD and the Gaussian distribution. It becomes clear

that the resulting non-linear shape of the QQ-Plot derives in a leptokurtic distribution which is more

peaked than the Gaussian and exhibits heavier tails. It seems obvious that the CFD function becomes

more adequate than the Gaussian one for the USD/YEN exchange rate.

We also can interpret equation (5) as a variable transformation in the style of Johnson (1949). The

function Q contains the non-perturbative deviation with respect to the Gaussian distribution, which

is recovered when Q is equal to the identity function. Defining a particular parametric form for the

function Q, implicitly supposes a certain parametric distribution function. Therefore, one can interpret

the variable transformation as an alternative form of defining distribution functions, as pointed out by

Johnson (1949) or Kendall et al. (1994).8

As it is shown in Figure 6, the QQ-Plot of financial series shows a clear deviation from the identity

function, as corresponds to a Gaussian variables. Actually, our starting point of using polynomials to fit

the function Q came from the intuitive idea that considering the simple shape of the QQ-Plot, although

containing strong deviation from normality, it would be possible to make a Taylor series expansion

of the function Q around the identity function, where the terms with order higher than one contain

the deviation from normality. Nonetheless, as it is presented in Section 4.2, third-order polynomials

are enough to describe highly non-linearly behaved financial variables. This characteristic is of special

interest, since the transformation based on a series expansion of the QQ-Plot allows us to make a

non-perturbative approximation of the distribution function that we want to model.

3 Implications for risk management

The Basel II agreement accepts the Value at Risk, VaR, as a measure to calculate the capital require-

ments of financial institutions. Therefore, VaR has became one of the most important measures in risk

management for both practitioners and academics. The VaR is the maximum loss we will expect with

probability 1−� over a certain time period Δt. Formally, V aR(1−�, Δt) = F−1
Δt (�), where F

−1
Δt is the

inverse of the distribution function of returns for a Δt period. In other words, V aR(1 − �, Δt) is the

�-quantile of the distribution F . Cornish-Fisher expansions have been widely used to account for the

presence of skewness and kurtosis in the distribution of returns. Nonetheless, CFE are an approximation

and important biases may arise due to the truncation of the expansion series.

In Table 2 we show four quantiles on the left-tail of the standardized third-order CFE and CFD. We

consider different levels of kurtosis for the symmetric (left-hand panel) and a negative skewed distribution

(right-hand panel), as is observed in many financial series. The quantiles have been computed by

simulation, that is, we have simulated 500,000 random i.i.d. standardized Gaussian numbers and we

have applied equations (1) and (5) to get the CFE and CFD samples respectively. Then, we obtain

8Something similar happens when one defines a density function f(x) in terms of its characteristic function g(k) =

E(eikx).
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the quantiles empirically using the 500,000 observations. The last row shows the quantiles for the

standardized Gaussian distribution for comparison. As expected, the CFE and CFD quantiles are

higher (in absolute value) than the Gaussian ones. Moreover, the CFE provides higher quantiles (in

absolute value) than CFD. The differences between CFE and CFD quantiles enlarges with � and (1−�).

This suggests that the CFE provides a more conservative VaR since the associated quantile is larger (in

absolute value). For instance, for � = 0, � = 20 and � = 0.01, the CFE provides a quantile of -6.20,

while the corresponding CFD quantile is -3.04. This result supposes a capital requirement under CFE

two times larger than under CFD (!).

These differences are due to the lack of accuracy of the third-order CFE. Columns �̂ and �̂ exhibit

the sample skewness and kurtosis computed using the 500,000 simulations for each case. We appreciate

how the sample skewness and kurtosis under CFE is much larger than the desired ones, but it is not

the case for the CFD sample. Using the previous example, the theoretical kurtosis is 20 but the CFE

sample yields �̂ = 84.62, while it becomes 19.67 for the CFD. To summarize, the CFD is an alternative

to CFE to compute the VaR since it is a distribution and does not involve large quantile errors due to

the truncation of the expansion.

4 CFD estimation

In this Section, we discuss three different estimation methods to fit the parameters of the CFD, intro-

duced in Section 2. Next, we will consider the CFD model to analyze the in–sample performance of the

CFD against other distributions using data of five stock indexes.

4.1 Methods of Estimation

We analyze three different methodologies to fit the coefficients in the transformation function Qi(X) =

a3,iX
3 + a2,iX

2 + a1,iX + a0,i from equation (5):

1. QQ-estimates: The least-squares fitting of the function Qi arising from the QQ-Plot.

2. MM-estimates: Fit the first four moments of the theoretical distribution.

3. ML-estimates: Choose the parameters that maximizes the logarithm of the likelihood function of

the distribution CFD3.

The first one is the most direct, or computationally less expensive one among the three methodologies

because it only involves a least-squares algorithm mainly based in matrix calculations. The fact that

the density function, CFd3(R) is defined through the function Qi(X) makes this methodology specially

appropriate. The number of available points to make the regression will depend directly on the number

of available historical data. In principle, the number of points in a QQ-Plot is chosen by the researcher

but the most appropriate one consists on considering the interval for the percentiles defined by each one

of the points of the QQ-Plot in such a way that it is the inverse of the number of sample data in the

series. For example, if we had 100 data, the first point would correspond to the percentile of 1%, and

if we had 1000 data it would correspond to the percentile of 0.1%.

In the second method we carry out the fitting based on the moments method (MM). This method

involves a non-linear process of optimization, because the moments are functions of the coefficients

and the inverse is required to estimate the coefficients as a function of the moments associated to the

distribution. It is relevant to point out that in all cases considered the convergence has always been fast

when we use the QQ-estimates as the initial guess.
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Finally, the maximum-likelihood method (ML) would not be, in principle, well adapted in our case,

since coefficients of the third-order polynomial enter in the density function in a highly non-linear way

(see Appendix A), which greatly complicates the numerical optimization. However, we have experienced

that using adequate starting parameters for the non-linear optimization algorithm, namely the QQ-

estimates, we have been able to achieve the global maxima for the log-likelihood functions easily and

quickly.

On the other hand, function Qi(X) has to be invertible and restrictions shown in equation (9) must

hold. Given that historical data present a positive excess of kurtosis, these conditions are naturally

satisfied when using the QQ-estimates. For the MM and ML methods it is necessary to impose explicitly

the restrictions in the optimization procedures. However, using the starting estimates of the QQ-method

and given the high flexibility of the third-order CFD, we always get inner solutions. In contrast, Jondeau

and Rockinger (2001) obtain many frontier solutions using Gram-Charlier densities, which are not so

flexible.

These algorithms have been tested using Monte Carlo experiments. We have considered the fit of

CFDs to data generated with both a CFD and a Gaussian mixture. Furthermore, in the latter case we

distinguish the situation where parameters are in or out of the restricted domain showed in Figure 1. We

consider N = 100 series of length T = 2000 of standardized CFD data. According to these experiments,

in general, the three algorithms are well behaved and the estimations of the QQ and ML are sensibly

better than those corresponding to the MM. Besides that, we find that ML-estimate is the most efficient

one when the true distribution is CFD. In addition, in the second experiment we have found that the

estimation errors and dispersions are very similar in the whole region of permitted values.9

4.2 Descriptive data analysis

To illustrate the estimation of the CFD we consider a database of weekly returns (from Wednesday

to Wednesday) for dollar denominated stock indexes for the main geographical areas: North America,

Japan, Europe, Emerging Markets and Eastern Europe Emerging Markets, represented by the Standard

and Poor’s 500 Index (S&P), the Nikkei-225 Stock Average (NKI), the Dow Jones EURO STOXX (STX),

MSCI Emerging Markets Index (EM) and the MSCI Eastern Europe Emerging Market Index (EME).

This data set consists on 519 observations per series ranging from January 4 of 1995 to March 23 of

2005.

As a preliminary investigation of the data, Table 3 presents a summary of the most important

univariate statistics. This table shows the first four moments and their corresponding standard errors,

in parenthesis, computed with the Generalized Moments Method (GMM) proposed by Bekaert and

Harvey (1997).10 Since the normality hypothesis is crucial to our analysis, we also report information of

three well-known tests. First we consider the Jarque-Bera (JB) statistic proposed by Bera and Jarque

(1982), which analyzes whether skewness and excess kurtosis are jointly zero. This test is suitable for

large samples only, because skewness and kurtosis approach normality only very slowly. Second, a Wald

test of the null hypothesis that the skewness and excess kurtosis coefficients are zero based on the GMM

estimates, as proposed by Bekaert and Harvey (1997), which incorporates the approximated finite-

sample distribution of skewness and kurtosis. Third, the Kolmogorov-Smirnov (KS) statistic which is

based on the comparison between the theoretical and the empirical cumulative distribution functions.

9More details are available from authors upon request.
10The mean, �2, � and � are jointly estimated using an exactly identified GMM system with four orthogonality condi-

tions. The variance-covariance matrix of the parameters is heteroskedasticity consistent and corrects for serial correlation

using a Bartlett kernel with an optimal band as in Andrews (1991).
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Since the corresponding p-values for all series and for all statistics are lower than 0.01, we do not report

them in Table 3 for shorten.

Parameter estimates for the mean are only significant for the S&P and the STX, and the most

volatile indexes are those corresponding to Emerging Markets. The JB and Wald tests indicate that

in none of the series the gaussianity hypothesis can be sustained. Although only Emerging Markets

present significant negative skewness, with values -0.718 and -0.443, in general we find that the skewness

coefficients are negative, indicating that crashes are more likely to occur than booms. The kurtosis

coefficient ranges from 3.9228 for the Nikkei to 5.997 for the E-STOXX. Summarizing, the JB, Wald

and KS tests indicate that the gaussianity hypothesis cannot be accepted for the index data, with

p-values close to zero.

4.3 Estimation Results

In this section we use the three estimation methods defined above to estimate the parameters under the

hypothesis that series described in Section 4.2 are independent CFD distributed.11 We test the goodness

of the fit using two different statistics. The first one is the classical Kolmogorov-Smirnov statistic, that

tests for the similarity between the empirical distribution function and the CFD distribution. For the

other test we take advantage of the property that if R is a CFD variable, then the variable X, defined

as X = Q−1(R), should be normal. Therefore, we can apply on these fictitious X variables any of the

usual normality tests to analyze if returns are CFD distributed. In particular, we use the JB test.

Table 4 shows the QQ (Panel A), MM (Panel B) and ML (Panel C) estimates and the corresponding

standard errors (in parenthesis). They have been calculated using a bootstrap method with 1000

simulations for the QQ and MM-estimates, and using the Hessian matrix evaluated at the ML estimates

for the ML method. The p-values of the goodness of fit tests are displayed in brackets. First, it

is interesting to notice the high degree of non-rejection of the CFD hypothesis, which indicates that

in almost all cases we have considered just four parameters are required to capture the non-normal

(unconditional) behaviour of financial series. Using the KS-statistic at a 5% significance level, the null

hypothesis that the data are CFD distributed cannot be rejected for any case. Comparing across the

different estimation methods, we observe that the p-values for the KS-test of the MM-estimates are

systematically smaller than the p-values of the QQ-estimates and that both are smaller than the ML-

estimates ones. Similar results can be observed within the JB-statistic. According to this test, we find

a rejection of the CFD assumption in none of the series for the three estimation methods. However, the

p-values of the JB-statistic suggest that the QQ-estimation method gets the best results.

According to the results presented above, it is easy to conclude that the ML method is the most

flexible one in finding good fits and that the assumption of the CFD becomes a great starting point to

simulate financial data series from a statistical point of view. Therefore, from now on, just the ML will

be considered for estimation purposes.

Next, we compare the goodness of fit of the CFD with other distributions. Table 5 presents the

values of the log-likelihood function for the indexes database considering four different distributions:

Gaussian, Johnson U-type distribution (Johnson 1949), the third-order CFE (see equation 2) and the

CFD. We have compared the CFD with these distributions for the following reasons: the Gaussian

distribution is a special case of the CFD (when a3 = a2 = 0) and is the standard market model, so that

in our comparison it might be considered as the first order approximation. The Johnson distribution,

as well as the third-order CFD, is a four-parameters distribution and is also very flexible, allowing for

11We have also used the CFD to describe daily returns of twelve exchange rates. The findings are rather the same than

for stock indexes, and they are available from authors upon request.
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heavy tails and asymmetry. Therefore, it is used to compare the CFD with a distribution with the

same number of parameters (degrees of freedom). Finally, given that the CFD is related to the CFE,

we have considered the expansion as a distribution12 and compare the results with the CFD. Table 5

also reports both the Akaike and Bayesian criteria, which penalize for an increase in complexity through

the inclusion of more parameters. The main finding is that the alternative distributions present a lower

(similar for NKI series) log-likelihood value.13 Moreover, both Akaike and Bayesian criteria establish

that CFD is preferred to explain all series, except for EM series, where the Johnson distribution is the

best for both criteria, although the differences are very small.

5 A dynamic model for financial series

5.1 The model

In this section we present a GARCH-type model with CFD innovations allowing for time varying skew-

ness and kurtosis. Specifically, the most general process we assume for the log-returns of daily financial

series is

rt = C + yt (18)

yt = �txt where xt ∼ CFD(a2, t, a3, t) (19)

�2
t = �0 + �1�

2
t−1 + �2 (yt−1 + �3�t−1)

2
(20)

ã2,t = 
0 + 
1yt−1 + 
21{yt−1<0}yt−1 (21)

ã3,t = �0 + �1yt−1 + �21{yt−1<0}yt−1 (22)

a2,t = G(ã2,t) (23)

a3,t = G(ã3,t) (24)

We initially pre-estimate an ARMA(1,1) process on the return series to remove the predictable part of

the returns. Then, we use the residuals of this previous estimation to fit our model, and this why in

equation (18) we model the returns as a constant, C, plus an innovation, yt, which is CFD distributed.

We decompose the innovation as the product of �t, which stands for the contemporaneus volatility, and

xt(a2,t, a3,t), which is distributed as a standardized CFD, according to equations (5), (8), (13), (14)

and (15).

For the variance process in equation (20), we consider the NGARCH(1,1) specification proposed by

Engle and Ng (1993). This model nests the common GARCH(1,1) developed by Bollerslev (1986) when

�3 = 0. Moreover, the NGARCH also allows the well known leverage effect when �3 < 0, that is, a

negative relationship between returns and volatility.

In order to model the dynamics of the skewness and kurtosis, equations (21) and (22) stand for the

dynamics of the unconstrained CFD parameters ã2,t and ã3,t. We can observe that the current value of

these parameters depend on the past innovation. The function 1{...} is an indicator function that equals

one if the expression in brackets is true, then it allows for a asymmetric effects in the skewness and

kurtosis (through a2 and a3) depending on the sign of yt−1. After that, we obtain the correct (bounded)

parameters, (a2,t, a3,t) through a logistic mapping denoted by the function G(. . .) in equations (23) and

12See the comments on the relationship between the CFE and the CFD in Section 2.
13Since CFD nests the Gaussian distribution when a2 = a3 = 0, we have also compared both distributions using the

likelihood ratio test obtaining that CFD is always preferred.
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(24). We consider a two-steps procedure. Initially, we map ã3,t into its correct domain14. Secondly,

given the mapped value of a3,t we compute the bounds for a2,t using equation (15). Finally, we map

ã2,t into the allowed domain to obtain a2,t.

5.2 Estimation results

Besides the model described by equations (18) to (24) we also consider five compiting models all of

them nested in the most general one. We consider two variance specifications, GARCH and NGARCH,

to measure the relevance of the leverage effect. We also introduce the classical gaussian innovations.

Finally, we restrict equations (21) and (22) to asses the relevance of asymmetries in the conditional

skewness and kurtosis. Table 6 summarizes the different models considered. We estimate all models by

QMLE and the standard errors have been calculated using the Hessian matrix.

For the empirical estimation we consider the last decade of daily returns of the stock indexes S&P

500 and EuroStoxx 50. Figure 7 exhibits the time series of both indexes. Specifically, our sample goes

from 03/17/2000 to 03/20/2010. This period covers the “.com” and the subprime crises located at the

beginig and at the end of the sample respectively, while the period between both crises is characterized

by a lower volatility and a positive trending. In Table 7 we summarize the main statistics of both

series. Both series show similar standard deviations and the maximum and the minimum daily return

in both samples are also quite similar. Nonetheless, the S&P 500 is more leptokurtic and the asymmety

(negative) is higher. As expected, the Jarque-Bera statistic rejects the hypothesis of normality in both

series.

Tables 8 and 9 show the results of estimating the six candidate models. The last three rows corre-

spond to the Akaike (AIC), Schwarz (SIC) and Bayesian (BIC) criteria to measure the goodness of fit

of the models. In general, the estimates are quite significant (estimates without markers). Comparing

Model 1 against Model 2, we observe that the leverage effect is a relevant feature. For both series Model

2 yields a much higher value of log-likelihood function, and it is preferred to model 1 for the three

measures. When we compare Model 1 and Model 3, we observe similar results, that is, a GARCH model

with non-Gaussian innovations is preferred to the normal-GARCH.

It is also relevant to compare Model 2 against Model 3, that is: what is preferable, to use a better

specification of the variance equation considering the leverage effect (Model 2), or to use a simple

GARCH model but with non-normal innovations. According with our results, Model 2 is preferred to

Model 3. Model 2 yields a higher value of the likelihood function. Moreover, note that Model 2 is

more parsimonius than Model 3, therefore the three goodness of fit measures are clearly favourable to

the Model 2 against Model 3. Model 4 considers jointly the leverage effect and non-normal innovations

with time-varying skewness and kurtosis outperforms the more parsimonious especifications despite the

increase in the number of parameter. Finally, to introduce an asymmetric effect in the dynamics of the

CFD parameters, Model 6, supposes an improvement according to AIC, but not for SIC and BIC,

which penalyze stronger the number of parameters.

An interesting finding is that the estimated parameters of the variance equation do not change widely

when we consider different dynamics for the innovations. Thus, a good strategy to estimate the most

sophisticated models is to estimate first the simple GARCH or NGARCH, and to use these estimates

as the starting values to estimate more general models. For those cases where the optimization does

not converge, we could restrict the model assuming the variance parameter estimates of the simplest

models.

14See proposition 3 and equations (13) to (15) for more details.
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From the estimation of the different GARCH models we obtain the daily series of a2,t and a3,t.

From these series we compute the daily conditional skewness and kurtosis using equations (11) and

(12). Figure 8 displays the skewness and kurtosis time series for the S&P 500 sample using Model 6.

The first result is that the skewness is always negative and the kurtosis can change widely. For the

“crisis” periods it can take values around 40. It seems that there is relationship between skewnees and

kurtosis: the higher the skewness (in absolute value), the higher the kurtosis. . .

6 Option valuation

In this Section we derive closed-form formulae for the price and the greeks of European-style options

with underlying characterized by a CFD. We also compare the behaviour of the CFD model with the

model proposed by Corrado and Su (1996a).

6.1 European Option Valuation

As it is well known, the BS model is based on the hypothesis that asset prices, St, follow a geometric

Brownian motion under the risk-neutral probability Q given by:

ST = Ste

(

r−�
2

2

)

�+�(WT−Wt) (25)

where r is the risk-free rate, � is the volatility of the underlying, St is the initial price, � is the time

to maturity and WT is a standard Brownian motion. The basic hypothesis of the model is that log-

returns, defined as Rt−s = ln (St/St−s), follow a normal distribution, N(r, �
√
t− s). In general, we can

obtain the price of an European call option as the discounted expected value of the payment under the

risk-neutral probability:

Ct = e−r�EQ[(ST −K)
+
] (26)

Considering a geometric Brownian motion, the application of this formula yields the well known BS

formula. Nonetheless, equation (26) is of general use for any other distribution governing ST . In this

work we make the hypothesis that prices differences can be expanded through a CFD. Therefore, the

first order term in the expansion of the price ST will be normally distributed, instead of log-normal as

in the BS framework, and hence, the first order approximation of the price of a European call using

the CFD will not exactly coincide with the BS formula, as it is the case of approaches based on an

Edgeworth or Gram-Charlier expansion (Jarrow and Rudd 1982 or Corrado and Su 1996a).

Notice that we do not consider the expansion of the log-returns, Rt, in terms of CFD, as would

be more natural, because in such a case prices, St, would follow a distribution with divergent mean

(i.e. E
[
eRt

]
= ∞) and, therefore, its application to option pricing would be useless.15 Nevertheless,

this method, regarded as an approximation, is theoretically equally valid as any other expansion based

method and, moreover, it avoids negative density values.

Due to the above mentioned reasons, the first order approximation of the CFD expansion considered

in this work will be the process

ST = St (1 + r�) + St�(WT −Wt) (27)

15Let us consider the expression: E
[

eR
]

=
∫∞
−∞ eRCFdm (R) dR, where CFdm(R) is given by equation (8). Carrying

out the variable change, R = Qm(X), we would obtain the following integral:
∫∞
−∞ e

∑

m

i=1
aiX

i
1√
2�

e−
1

2
X2

dX, which

clearly diverges for m ≥ 3 if a3 is greater than zero.
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rather than the geometric one.16 It is important to remark that, although the process in equation

(27) includes the possibility of negative prices, in our framework this feature has to be considered as an

approximation nuisance; a very small probability of 10−20 is in practice virtually equal to zero. Moreover,

this theoretical drawback allows us to obtain a positive definite density function which permits rather

high kurtosis and skewness levels.17

Let r be the risk-free interest rate, K the exercise price of the option, St the initial price of the

underlying, � the time to maturity and � the volatility of the process. It is easy to show that in the

absence of arbitrage opportunities the price of a call option, whose underlying follows equation (27), is

given by:

C =
1

1 + r�

[
(St (1 + r�)−K) Φ(−d) + St�

√
��(d)

]
(28)

where d = (K − St(1 + r�)) / (St�
√
�) and Φ (x) and �(x) stand for the distribution and density func-

tions of the standard Gaussian variable respectively.

This article assumes that the model for the asset price, ST , under the risk neutral measure Q is

given by:

ST = St(1 + r�) + St�
√
�z∗ (29)

where z∗ is a variable following a standardized CFD. Note that the the martingale restriction holds,

i.e. EQ(ST ) = St(1 + r�). Under the assumption of a CFD distribution we can obtain a more general

formula for the option price, since both skewness and excess of kurtosis different from zero are possible

under this distribution.

Proposition 6 Let r be the risk-free interest rate, K the strike of the option, St the initial price of

the underlying, � the time to maturity and � the volatility of the process. In the absence of arbitrage

opportunities the call option, CCFD, whose underlying follows a third-order CFD, given by equation (8),

is:

CCFD =
1

1 + r�

{

(St(1 + r�)−K) Φ (−d)+

�
√
�St�(d)

(

a3
(
d2 − 2

)
+ a2d+

√

1− 6a23 − 2a22

)

}

(30)

Q� (x) = St(1 + r�) + St�
√
�

(

a3x
3 + a2x

2 +

(√

1− 6a23 − 2a22 − 3a3

)

x− a2

)

where Φ(x) is the distribution function of a standard Gaussian variable, �(x) is its corresponding density

and Q−1
� (x) is the inverse of the third-order polynomial Q� (x).

Note that equation (30) becomes equation (28) when a3 = a2 = 0, as we would restore the normal

distribution for ST .
18 Although not reported here, it is straightforward to generalize the later proposition

to allow for a general m-th order CFD distribution. Nevertheless, with a third-order polynomial we are

already able to capture most non-normal features.

We consider a hypothetical call option with K = 10, one month to maturity, � = 0.40 and r = 0.05,

to analyze the valuation differences between the Black-Scholes model and the CFD approximation. We

select different degrees of � and �. In particular, we choose parameters (a2, a3) equal to (0, 0.092),

16Bouchaud and Potters (2000) analyze pricing differences between both approximations. They find that with a daily

volatility of 1% and a zero interest rate, the relative difference between the geometric and arithmetic BS price is almost

zero for at and in-the-money options but can be as high as 30% for options 20% out-of-the money. Nevertheless, this

difference is very small when we consider absolute differences.
17This problem could be solved considering a truncated CFD which would assign a zero probability for the occurrence of

negative prices and a CFD distribution for positive prices. However, in this case valuation formulas are more complicated

and the pricing differences are almost negligible for reasonable parameter sets.
18The inverse of the polynomial Q−1

� (K) is equal to
(

K − S0(1 + r�)/S0�
√
�
)

when a3 = a2 = 0.
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(−0.11, 0.079) and (0.11, 0.079), which correspond to (�, �) coefficients of (0,8), (-1,8) and (1,8), re-

spectively. Therefore, we are considering the influence of positively and negatively skewed implied

density functions with fat tails. Figure 9 shows the differences between the CFD and BS call prices.

The presence of positive (negative) skewness makes the upper (lower) tail of the price density thicker

under the CFD model, and this feature induces an increase in the probability of a large drop (raise)

in prices, which is responsible for the relative lower (higher) prices given by the BS formula for deeply

out-of or in-the money call options.

Corrado and Su (Corrado and Su 1996a, Corrado and Su 1996b, Corrado and Su 1997a, and Cor-

rado and Su 1997b) have developed a valuation formula for European options based on Gram-Charlier

distributions, which also includes the effects of skewness and kurtosis. Thus, we discuss it briefly and

consider it later in Section 7. The pricing formula of Corrado and Su (1996a) for a European call, CCS ,

is19:

CCS = CBS + �Q3 + (�− 3)Q4

CBS = S0Φ(d)−Ke−r�N(d− �
√
�)

Q3 =
1

6
S0�

√
�
((
2�

√
� − d

)
�(d) + �2�Φ(d)

)

Q4 =
1

24
S0�

√
�
((

d2 − 1− 3�
√
�
(
d− �

√
�
))

�(d) + �3�3/2Φ(d)
)

d =
ln (S0/K) +

(
r + �2/2

)
�

�
√
�

.

It is trivial to see that if the implied density function of log-returns is Gaussian (i.e. � = 0 and � = 3),

this expression becomes the BS formula.

In Figures 10 and 11 we analyze the differences between the Corrado and Su (CS henceforth) and the

Cornish-Fisher valuation formula for different values of � and �. These figures compare the BS implied

volatilities obtained with both models for the European option described above. Interestingly, we can

observe significant pricing differences although the first four moments of the implicit density function

for both models are the same. Figure 10 shows that the CS model gives higher implied volatility values

for deep out-the-money (otm) and deep in-the-money (itm) call options: with the underlying equal to

5 and � = 0 the CS model implies a volatility of 57%, meanwhile for the CFD the implied volatility

is 42%. On the other hand, for at-the-money (atm) and near itm options the CFD model gives higher

implied volatility values than CS. Analyzing the absolute and relative differences we observe that the

highest deviations are found for otm options for relative differences and in atm options for absolute

differences. The observed differences allow us to conclude that the implied density of the CS presents

heavier tails on the negative part than the CFD model.

It is also interesting to note that the CS model gives a hump shaped volatility pattern for deep

otm options, which the CFD model does not exhibit, displaying a maximum implied volatility for an

underlying value around 6. This “anomaly” is not observed in real volatility smile representations

(Jondeau and Rockinger 2000, e.g.) and it can be explained because of the incorrect negative density

values included in the CS model.

19Brown and Robinson (2002) found an error in the formula initially proposed by Corrado and Su (1996a). Along this

article we have considered the corrected option pricing formula.
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6.2 Hedging Parameters

In this subsection we characterize the hedging parameters (the Greeks, as they are more commonly

known) under the CFD option pricing model. One of the most important is the Delta, Δ, which

determines the sensitivity of the option price to the underlying asset price. Gamma, Γ, is defined as the

sensitivity of the Delta with respect to the underlying asset price and the Vega measures the dependence

to the option price to volatility shifts.

Although completely analytical, the expressions for the Greeks in the CFD model are rather cum-

bersome, and we will just show here the expressions for the Delta and the Gamma:

ΔCFD =

Φ(−d) + �(d) ((St (1 + r�)−K) dK)+

�(d)
√
��

( (
a1 + a2d+ a3

(
1 + d2

))
− StddK

(
a1 + a2d+ a3

(
1 + d2

))
+

St (a2dk + 2a3ddK)

)

ΓCFD =

�(d) (St (1 + r�)−K)
(
dd2K − dKK

)
+

St� (a2dk + 2a3ddK)− 2� (d) dK (1 + r�)+

�(d)
√
��

⎛

⎜
⎝

−2ddK
(
a1 + a2d+ a3

(
1 + d2

))

St

(
a1 + a2d+ a3

(
1 + d2

) (
d2d2K − d2K − ddKK

))
+

2 (a2dK + 2a3ddK) + St

(
a2dKK + 2a3

(
d2K + ddKK

))

⎞

⎟
⎠

where :

d = Q̃−1
� (K/St)

dK =
−K

S2
t

∂Q̃−1
� (x)

∂x

⏐
⏐
⏐
⏐
⏐
x=K/St

dKK =
K2

S4
t

∂2Q̃−1
� (x)

∂x2

⏐
⏐
⏐
⏐
⏐
x=K/St

− 2
K

S3
t

∂Q̃−1
� (x)

∂x

⏐
⏐
⏐
⏐
⏐
x=K/St

Q̃� (x) = �
√
�

(

a3x
3 + a2x

2 +

(√

1− 6a23 − 2a22 − 3a3

)

x− a2

)

+ (1 + r�)

When the European call market price is given by the CS formula, the Delta and Gamma of a call options

can be written (Backus et al. 1997) as:

ΔCS ≃ Φ(d) + �(d)
{
1

6

(
d2 − 3d�

√
� + 2�2� − 1

)
+

+

2
24

(
−d3 + 4d2�

√
� + 3d− 3d�2� − 4�

√
�
)}

ΓCS ≃ �(d)

S0�
√
�

{

1 +

1
6

(
−d3 + 3d2�

√
� − 2d�2� + 3d− 3�

√
�
)

+

2
24

(
d4 − 4d3�

√
� + 3d2�2� − 6d2 + 12d�

√
� − 3�2� + 3

)}

d =
ln (S0/K) +

(
r + �2/2

)
�

�
√
t

In Figures 12 and 13 we compare the Delta and Gamma functions derived from the CFD and CS

models, considering the same parameters used in Figures 9 and 10. We appreciate that for both deep itm

and otm options the CS model gives higher Delta values than the CFD, and vice versa for atm options.

These differences are significant as they can be as high as 20%. On the other hand, calculated Gamma

values also show substantial differences: atm options present similar Gamma values for both models,

but for deep otm or itm options the CFD model derives more reliable results given that the CS model
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presents negative values, which are theoretically “surprising” for call options (see Hull 2004). Again,

this anomaly (the Delta function presents a local maxima) is associated to the negative density values

and through the fact that the Delta and Gamma expressions for the CS model are only approximations

and cannot be calculated analytically. Therefore, before turning to the empirical comparison between

both models, we can conclude that the CFD option pricing model is theoretically more coherent than

the CS model as it does not derive “dubious” hedging values for deep otm or itm options.

7 Empirical Performance of CFD Option Pricing

7.1 Data Description and Estimation Procedure

The analysis of the empirical performance of the CFD option pricing model is based on the S&P 500

index options database of Dumas et al. (1998). Options in this database are of European-style and expire

on the third Friday of each month. Option prices were collected every Wednesday between 2:45 p.m.

and 3:45 p.m. from June 1988 to December 1993, which includes a total number of 292 weekly spaced

days. We have considered the bid-ask mid price for estimation purposes. The risk-less interest rate

is approximated by the T-bill rate implied by the average bid and ask discounts reported in the Wall

Street Journal. This database accounts for the presence of dividends providing the implied forward

prices, computed as the current stock price minus the present value of dividends times the interest

accrued until maturity, i.e. Ft,T = (St − D̂t)e
r� . The final sample contains 28417 option prices (15889

calls and 12528 puts) after removing options that do not verify arbitrage restrictions.

We compare the performance of the CFD option valuation model with respect to the standard

option valuation for European call on futures of Black (1976), B76, the (corrected) model of Corrado

and Su, CS, and a practitioner-style method, P-BS, which combines the BS formula with a deterministic

volatility function that is assumed to be a quadratic function of moneyness.20 Specifically, we assume

that

�(x) = �0 + �1(x− �2)
2 (31)

with x = K/Ft,T and �0 > 0, �1 ≥ 0 in order to ensure positivity. To illustrate this methodology, in

Figure 14 we show the daily estimated volatility functions using option data from 08/28/1991 and the

BS implied volatilities (crosses). Moreover, we split the sample into two groups depending on the option

maturity as it is explained in the next paragraph. First, it is interesting to observe the well known

smile/smirk shape of the estimated volatility functions. Second, the volatility smile is more pronounced

for short-term options, according to previous articles, such as Bakshi et al. (1997).

We have carried out both an in–sample and an out–of–sample analysis. The parameters of each

model (� for B76, {�i}2i=0 for P-BS, {�, �, �} for CS and {�, a2, a3} for CFD) are calibrated for each

of the 292 days of the sample and have been computed from the cross-section of options prices. We

have also analyzed the model performances for different subsamples. Specifically, we consider i) call and

put options separately, and ii) we split the option database between short-term and long-term options.

Short-term options are those with a time to maturity lower than 61 days, while long-term options have

an expiration larger than 60 days. The implicit estimator for date t is defined as the minimizer of the

mean of the squared pricing errors for the options traded that day, that is,

�̂t = argmin
�

1

nt

nt∑

i=1

[ci(�)− ci]
2

(32)

20This method has been studied widely in Dumas et al. (1998).
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where ci(�) is the theoretical option price, ci, denotes the market option price and nt is the total number

of options at date t. For calibration reasons, we discard those days where the number of observations

(contracts) is lower than six, that is, two times the number of parameters to be calibrated. This rule

only applies for the subsamples of long-term options and specially for the puts. Moreover, for the most

unfavorable case it only supposes the discard of less than the 5% of the sample days.

7.2 Option Pricing Results

Table 10 displays the in–sample results of the four option pricing models (B76, P-BS, CS and CFD).

We report the daily average for the 292 sample days of the root mean squared error (RMSE) and mean

absolute error (MAE) as the performance measures. Bold numbers represents the model with the best

performance. The main result is that CFD produces the lowest RMSE and MAE in all cases. We can

also appreciate that the Practitioner-BS model performs better than CS. Figure 15 exhibits the scatter

plot for the option implied pairs (�, �) under both the CS and the CFD option pricing models for the

whole sample. This figure also displays the bounds for the allowed (�, �) values for the underlying

distributions (see Figure 1). We observe that the CS pairs (circles) equal the bound for non negativity

for a large number of sample days, while the CFD model yields higher values for both the implied

skewness (in absolut value) and kurtosis for a great deal of days (dots). This finding corroborates the

statement that Edgeworth based distributions are too restricted to capture high degrees of skewness

and kurtosis implicit in option prices.21

Given the in–sample calibrated parameters, we use them to test the models out–of–sample. We use

the parameters calibrated at date t to value options at time t + Δt. We would like to remark that

this exercise supposes a one week out–of–sample analysis, since our option data is only sampled on

Wednesdays (Δt = 7 days). The results for the out–of–sample analysis are shown in Table 11. Again,

the main result is that the CFD model outperforms the rest of the models for the whole option sample

and all subsamples considered, yielding the lowest error measures. Nonetheless, in contrast with the

in–sample results, we observe that now the CS model generates lower RMSE and MAE than P-BS in

the majority of the situations.22

It is also interesting to analyze the evolution of the option implied moments. Figure 16 displays the

implicit volatility (top), skewness (medium) and kurtosis (bottom) for each sample day for the models

B76, CS and CFD. The implicit volatilities are quite similar across models, although the evolution of

the CFD volatility is slightly sharper. The CFD implied skewness, in general, becomes more negative

than CS one, and the option implied CFD distributions are more leptokurtic than the Gram-Charlier

ones.

Summarizing, we can state that the CFD model generates lower option pricing errors than B76,

P-BS and CS, in–sample and one week out–of–sample. Moreover, the CFD model is much more flexible

than CS to capture risk-neutral moments implied in the option prices.

7.3 Hedging Performance

In this section we conduct an analysis of the hedging performance of the different option pricing models.

We use the approach of Dumas et al. (1998), that is, we assume that the hedge portfolio is continuously

21Jondeau and Rockinger (2000), using French Franc/German Mark European type exchange rate options data, find
that the implied density function of the Corrado and Su model derives negative density values.

22Besides of the sample average, we also have considered the median of the 292 estimated RMSEs and MAEs, which is
a more robust statistic. In this case, the results hold in and out–of–sample. Tables similar to Tables 10 and 11, but using
the median, are available upon request.
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rebalanced. Therefore, the hedge portfolio error is defined as

�t = ΔCreal,t −ΔCmodel,t (33)

where ΔCreal,t is the observed (real) variation in the option price from day t until day t+7 and ΔCmodel,t

is the corresponding variation using the theoretical value. The intuition behind equation (33) is that

when the hedge is continuously rebalanced, the hedging error is simply equal to the time increments in

the valuation errors.23

Table 12 shows the root mean squared hedging error (panel A) and the mean absolute hedging error

(panel B) for the four option pricing models considered and differentiating by option maturity and

type of option like in Tables 10 and 11. The best performance is again in bold. We observe that the

model with the lowest hedging errors is CFD for the two performance measures and for all subsamples

considered.

8 Conclusions

Cubic polynomial base transmutations of the Gaussian distribution are shown to be very efficient to

model densities which even strongly deviate from the normal case. In this paper we analyze the paramet-

ric properties of the expansion and allows us to present the Cornish-Fisher distribution. We determine

the moments and the domain of skewness and kurtosis over which the CFD is valid. This domain is

considerably wider than the corrections to the Edgeworth density proposed by Jondeau and Rockinger

(2001) or León et al. (2009).

The new distribution is applied to the estimation of densities in an independent and identically dis-

tributed framework, and three different estimation methods have been proposed: maximum likelihood,

the moments method and a quantile based method. We find that maximum likelihood provides the best

estimates in terms of the Kolmogorov-Smirnov test, and the quantile-based method is a good choice for

starting values in optimization procedures.

We provide closed-form option price and hedging parameters formulae assuming that price differences

follow a third-order CFD under the risk-neutral measure. In this way, we have proposed a new semi–

nonparametric generalization of the Black and Scholes formula to include underlyings whose returns can

be characterized by high degrees of skewness and kurtosis. In addition, we have shown that hedging

parameters in the CFD option pricing model do not present the anomalies of the CS model (negative

Gamma values for deep out or in-the-money options), although both are semi–nonparametric.

We have evaluated the performance of the CFD option pricing model using a S&P 500 option

database. Both the in–sample and out–of–sample results confirm that CFD option pricing model out-

performs the CS approach and a practitioner–style method. Moreover, the CFD option pricing model

also yields lower hedging errors. These results hold when separating the option database between short

and long maturity options. We also find that the Gram-Charlier density is very restrictive to capture

the option implied moments. Therefore, given that, i) CFD option pricing model performs better than

CS ”in” and out–of–sample, ii) CFD does not present the anomaly in the hedging parameters, and iii)

CFD generates lower hedging errors, we can conclude that the CFD model is preferable than the CS

model within the semi–nonparametric class of distributions for valuing options.

Comparison of the option pricing performance and of the modeling flexibility between the CF dis-

tribution and other option pricing models, that also allow for heavy-tailedness but do not belong to

23See Dumas et al. (1998) for more details about equation (33).
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the semi–nonparametric class, as a non-parametric method based on a mixture of log–normal densities,

the parametric approach of Malz (1996) which assumes a jump-diffusion for the underlying process,

or the stochastic volatility model of Heston (1993), could be of interest and is left for future research.

Moreover, to develop a GARCH model with CFD innovations allowing for time-varying skewness and

kurtosis is a promising application of the results of this article.
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A Third-order Cornish-Fisher Density

The third-order Cornish-Fisher density with parameters a3, a2, a1 and a0 is given by:

CFd3(R) =
d
[
Q−1(R)

]

dR

1√
2�

e−
1

2 [Q
−1(R)]

2

(34)

where Q−1(R) is the inverse of the third-order polynomial, a3X
3 + a2X

2 + a1X + a0 = R, and

d
[
Q−1(R)

]
/dR is the first derivative of this inverse function with respect to R. Both the inverse of

a third-order polynomial and its first derivative can be calculated analytically:

Q−1(R) = − a2
3a3

+
3

√
√

B1R+ a3B2 +
√

B1R2 +B2R+B3 − (35)

1

3

a1/a3 − a22/3a
2
3

3

√√
B1R+ a3B2 +

√
B1R2 +B2R+B3

and:

d
[
Q−1(R)

]

dR
=

√
B1 +

( 1

2
B2+RB1)√

B3+RB2+R2B1

a3B2 +R
√
B1 +

√
B3 +RB2 +R2B1

× (36)

⎛

⎝

1
3

3

√

a3B2 +R
√
B1 +

√
B3 +RB2 +R2B1+

1
27a2

3

3a3a1−a2

2

3
√

a3B2+R
√
B1+

√
B3+RB2+R2B1

⎞

⎠

where B1, B2 and B3 depend on the coefficients a0, a1, a2 and a3 and are given by:

B1 =
1

4a23
(37)

B2 =
a2a1
6a33

− a0
2a23

− a32
27a43

B3 = −a2a1a0
6a33

+
a20
4a23

+
a31

27a33
+

a32a0
27a43

− a22a
2
1

108a43

B Proofs

B.1 Proposition 1

Proof. In order to guarantee that a third-order polynomial Q(x) = a3x
3+a2x

2+a1x+a0 is invertible it

is enough and necessary to impose that it is a strictly increasing function. In consequence, the condition

of positive derivative must hold for every point x:

Q′(x) = 3a3x
2 + 2a2x+ a1 > 0

This equation represents a parabola that must be positive for every point x, and is equivalent to impose

the following conditions: existence of a unique minimum and a positive function value in this minimum.

The first one implies that it must exist a unique solution, xm, to Q′′(xm) = 6a3xm + 2a2 = 0, which is

always verified, and that Q′′′(xm) > 0, which gives a3 > 0. The second conditions implies: Q′(xm) =

3a3x
2
m + 2a2xm + a1 = a1 − 1

3
a2

2

a3

> 0, which implies the following conditions: −
√
3a3a1 < a2 <

√
3a1a3

and a1 > 0. The result of this Proposition could be easily generalized to a fifth order polynomial.
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B.2 Proposition 2

Proof. Consider the Fourier transform of the random variable R:

P̂ (k) = E
[
eikR

]

where E [⋅] denotes the expectation operator. After making the following variable transformation R =

Q(X):

P̂ (k) = E
[

eikQ(X)
]

⇔ P̂ (k) =

∫
1√
2�

e−
1

2
X2+ikQ(X)dX

Expanding the exponential in power series we obtain:

P̂ (k) =

∞∑

m=0

(ik)
m

m!

∫
1√
2�

Q(X)e−
1

2
X2

dX (38)

Using this expression we obtain the moments of the variable R can be expressed by the following integral:

E [Pm] =

∫
1√
2�

Q(X)e−
1

2
X2

dX (39)

Next, we define the functional generator P̂ (k, J) as:

P̂ (k, J) =

∫
1√
2�

Q(X)e−
1

2
X2+JXdX (40)

where the variable J is included in order to calculate the integrals. If Q(X) is a polynomial it is easy

to demonstrate that equation (39) reduces to:

E [Pm] =

[

Q

(
∂

∂J

)]m

⋅
∫

1√
2�

e−
1

2
X2+JXdX

⏐
⏐
⏐
⏐
⏐
J=0

(41)

The integral (41) can be carried out analytically:

∫
1√
2�

e−
1

2
X2+JXdX = e

1

2
J2

(42)

obtaining, finally, the following expression:

E [Pm] =

[

Q

(
∂

∂J

)]m

⋅ e 1

2
J2

⏐
⏐
⏐
⏐
⏐
J=0

(43)

B.3 Proposition 3

Proof. For the first result one just has to impose �′
1 = 0 and �′

2 = 1 in equations (11). In order to

prove the second one we need to replace the conditions a0 = −a2 and a1 =
√

1− 6a23 − 2a22 − 3a3 in

the inequation −
√
3a3a1 < a2 <

√
3a1a3, which guarantees the existence of the CFD. As a result, one
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finds:

−
√

3a3

(√

1− 2a22 − 6a23 − 3a3

)

< a2 <

√

3a3

(√

1− 2a22 − 6a23 − 3a3

)

(44)

Solving this equation for a2 one obtains that this is equivalent to:

−
√

3a3

(√

21a23 + 1− 6a3

)

< a2 <

√

3a3

(√

21a23 + 1− 6a3

)

(45)

Imposing that

√

3a3

(√

21a23 + 1− 6a3

)

has to be a real number and that a3 > 0, we obtain:

0 < a3 <
1√
15

(46)

B.4 Proposition 4

Proof. To prove this Proposition we will consider the expression of the density function of a third-order

Cornish-Fisher distributed variable:

CFd3(R) =
d
[
Q−1

3 (R)
]

dR

1√
2�

e−
1

2 [Q
−1

3
(R)]

2

(47)

Derivating this expression with respect to R and making d (CFd3(R)) /dR = 0, we find the condition

for a maximum of the density function, Rm,:

d (CFd3(R))

dR
=

⎡

⎣
d2
[
Q−1

3 (R)
]

dR2
−
(

d
[
Q−1

3 (R)
]

dR

)2

Q−1
3 (R)

⎤

⎦
1√
2�

e−
1

2 [Q
−1

3
(R)]

2

= 0

⇒ d2
[
Q−1

3 (Rm)
]

dR2
−
(

d
[
Q−1

3 (Rm)
]

dR

)2

Q−1
3 (Rm) = 0 (48)

In order to demonstrate the unimodality of the CF3 we have to prove that we have only one Rm. The

function Q−1
3 (R) is necessarily strictly increasing for the existence of the density and, therefore, as Q−1

3 is

the inverse of a third-order polynomial, it can only have one inflexity point, Ri, where d
2
[
Q−1

3 (R)
]
/dR2

is equal to zero, and one cross point with the x-axis, Rc, where Q−1
3 (R) is equal to zero. For the shake

of ease of readiness for this demonstration we will denote d2
[
Q−1

3 (R)
]
/dR2 by Q−1

3 (R)′′. In the limits

where R → ±∞ we have Q−1
3 (R) → ±∞ and Q−1

3 (R)′′ → 0. Therefore, we have three cases: i)

Rc = Ri, ii) Rc > Ri, and iii) Rc < Ri. If we demonstrate that there is only one Rm for each case we

will prove the proposition.

i) Rc = Ri. When Rc = Ri, then Rm coincides with them, Rm = Rc = Ri. As we have that

Q−1
3 (R) > 0 and Q−1

3 (R)′′ < 0 , equation (48) cannot hold. When R < Rc then Q−1
3 (R) < 0 and

Q−1
3 (R)′′ > 0 and also equation (48) cannot hold. Thus, we have only a maximum Rm.

ii) Rc > Ri. If R > Rc > Ri then Q−1
3 (R) > 0 and Q−1

3 (R)′′ < 0 and equation (48) cannot

hold. If R < Ri < Rc then Q−1
3 (R) < 0 and Q−1

3 (R)′′ > 0 and equation (48) cannot hold. When

Rc > R > Ri then Q−1
3 (R) < 0 and Q−1

3 (R)′′ < 0 and, therefore, there exists at least one point Rm

where equation (48) holds. But there can only be one Rm because the function Q−1
3 (R) is strictly

increasing, Q−1
3 (R)′ > 0, and Q−1

3 (R)′′ is strictly decreasing and, therefore, equation (48) can only hold
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once.

iii) Finally, the third case is very similar to the second one.

B.5 Proposition 5

Proof. We only have to consider the definition of a Cornish-Fisher distributed variable to prove this

proposition. In Equation 5 we see that a CF variable is given by R =
∑m

i=0 aiX
i, where X is a standard

gaussian variable. Therefore, the variable Z given by:

Z = m+ �R = m+

m∑

i=0

�aiX
i = m+ �a0 +

m∑

i=1

�aiX
i,

which can be again rewritten as Z = a′0 +
∑m

i=1 a
′
iX

i, where a′i = �ai and a′0 = �a0 +m.

B.6 Proposition 6

Proof. We consider that the underlying ST at the time of maturity T can be approximated through:

ST = St(1 + r�) + St�
√
�z∗ (49)

where z∗ is a standardized third-order CFD variable with parameters a2 and a3. In the absence of

arbitrage opportunities the price of a European call option should be:

C =
1

1 + r�
E
[

(ST −K)
+ ∣Ft

]

(50)

Therefore, we have to evaluate the following integral

C =
1

1 + r�

∫ ∞

K

(ST −K)CFd3(ST )dST (51)

where cf3(ST ) denotes the density function of the third-order CFD variable ST . In order to evaluate

this integral, we consider the variable change, ST = St(1+ r�) +St�
√
�Q̃� (x) = Q� (x), where Q̃� (x) is

the polynomial corresponding to a standardized third-order CFD with coefficients a2 and a3

C =
1

1 + r�

∫ ∞

K

(

St(1 + r�) + St�
√
�Q̃� (x)−K

)

CFd3(ST )dST

=
1

1 + r�

{

(St(1 + r�)−K)

∫ ∞

K

CFd3(ST )dST + St�
√
�

∫ ∞

K

Q̃� (x)CFd3(ST )dST

}

We can calculate the first integral using the above mentioned variable change, ST = Q� (x) and the

relation that holds in any percentile-to-percentile transformation, namely, CFd3(ST )dST = 1√
2�

e−
1

2
x2

dx

, obtaining:

C =
1

1 + r�

⎧

⎨

⎩

(St(1 + r�)−K)
(
1− Φ(Q−1

� (K)
)
+ St�

√
�
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Q−1

� (K)

Q̃� (x)
1√
2�

e−
1

2
x2

dx

︸ ︷︷ ︸

⎫

⎬

⎭

(52)

26



where Φ(x) represents the standard normal distribution function. Next, we carry out the marked

integral, denoting Q̃� (x) = a3x
3 + a2x

2 + a1x+ a0 and d = Q−1
� (K):

∫ ∞

d

Q̃� (x)
1√
2�

e−
1

2
x2

dx =

∫ ∞

d

(
a3x

3 + a2x
2 + a1x+ a0

) 1√
2�

e−
1

2
x2

dx

=

∫ ∞

d

(
a3x

3 + a2x
2 + a1x

) 1√
2�

e−
1

2
x2

dx+ a0

∫ ∞

d

1√
2�

e−
1

2
x2

dx

=

∫ ∞

d

(
a3x

3 + a2x
2 + a1x

) 1√
2�

e−
1

2
x2

dx+ a0 (1− Φ(d))

= a2(1− Φ(d)) + �(d)
(
a3d

2 + a2d+ a1 + a3
)
+ a0 (1− Φ(d))

= �(d)

(

a3
(
d2 − 2

)
+ a2d+

√

1− 6a23 − 2a22

)

(53)

where �(x) denotes the standard normal density function and we have to bear in mind that for a

standardized third-order CF variable the following relations hold: a0 = −a2 and a1 =
√

1− 6a23 − 2a22−
3a3. Finally, we obtain the required result substituting equation (53) in equation (52):

C =
1

1 + r�

{

(St(1 + r�)−K) Φ (−d)+

�
√
�St�(d)

(

a3
(
d2 − 2

)
+ a2d+

√

1− 6a23 − 2a22

)

}

Q� (x) = St(1 + r�) + St�
√
�

(

a3x
3 + a2x

2 +

(√

1− 6a23 − 2a22 − 3a3

)

x− a2

)
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Table 1: CFD parameters tabulated by skewness and kurtosis

�∖� 0 0.25 0.5 1 1.5 2 2.5 3 3.5 4

3.5
0 0.0381 0.0802

— — — — — — —0.0177 0.0152 0.0066

4
0 0.0351 0.0729

— — — — — — —0.0314 0.0294 0.0229

6
0 0.0288 0.0585 0.1274

— — — — — —0.0679 0.0668 0.0635 0.0476

8
0 0.0255 0.0515 0.1083 0.1831

— — — — —0.0921 0.0913 0.0891 0.0790 0.0561

10
0 0.0234 0.0471 0.0976 0.1574 0.2517

— — — —0.1107 0.1101 0.1084 0.1009 0.0857 0.0514

12
0 0.0219 0.0440 0.0903 0.1426 0.2112

— — — —0.1261 0.1256 0.1242 0.1182 0.1066 0.0849

14
0 0.0207 0.0415 0.0848 0.1325 0.1901 0.2814

— — —0.1393 0.1389 0.1377 0.1327 0.1233 0.1070 0.0733

16
0 0.0197 0.0396 0.0806 0.1248 0.1761 0.2451

— — —0.1511 0.1507 0.1497 0.1453 0.1374 0.1242 0.1009

18
0 0.0189 0.0380 0.0771 0.1188 0.1657 0.2242 0.3267

— —0.1616 0.1613 0.1604 0.1565 0.1496 0.1385 0.1203 0.0814

20
0 0.0183 0.0366 0.0742 0.1139 0.1577 0.2097 0.2842

— —0.1713 0.1710 0.1702 0.1667 0.1606 0.1509 0.1359 0.1091

22
0 0.0177 0.0354 0.0717 0.1097 0.1511 0.1987 0.2608

— —0.1802 0.1800 0.1792 0.1761 0.1705 0.1619 0.1490 0.1281

24
0 0.0172 0.0344 0.0695 0.1061 0.1455 0.1899 0.2446 0.3336

—0.1886 0.1883 0.1876 0.1847 0.1797 0.1719 0.1606 0.1431 0.1095

26
0 0.0167 0.0335 0.0676 0.1030 0.1408 0.1827 0.2324 0.3024

—0.1964 0.1961 0.1955 0.1928 0.1882 0.1811 0.1709 0.1559 0.1305

28
0 0.0163 0.0327 0.0659 0.1002 0.1366 0.1765 0.2226 0.2827

—0.2038 0.2036 0.2029 0.2004 0.1961 0.1896 0.1804 0.1670 0.1463

30
0 0.0159 0.0319 0.0643 0.0978 0.1330 0.1712 0.2145 0.2682 0.3576

0.2108 0.2106 0.2100 0.2077 0.2036 0.1976 0.1891 0.1771 0.1593 0.1253

35
0 0.0152 0.0304 0.0611 0.0926 0.1255 0.1605 0.1989 0.2434 0.3010

0.2269 0.2268 0.2263 0.2242 0.2207 0.2156 0.2085 0.1988 0.1854 0.1651

40
0 0.0145 0.0291 0.0585 0.0885 0.1197 0.1523 0.1875 0.2268 0.2736

0.2416 0.2414 0.2410 0.2392 0.2361 0.2316 0.2254 0.2172 0.2063 0.1911

45
0 0.0140 0.0280 0.0563 0.0852 0.1148 0.1458 0.1787 0.2146 0.2555

0.2551 0.2550 0.2546 0.2529 0.2501 0.2461 0.2406 0.2335 0.2241 0.2117

This table shows the pairs
(a2

a3

)

of the standardized third-order CFD that yield the different values of skewness, �,

and kurtosis, �, in the horizontal and vertical axes respectively. For negative values of �, find the parameters as if
� were positive, and then change the sign of a2.
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Table 2: CFD and CFE quantiles comparison

� = 0 � = −0.5

� 3% 2% 1% 0.5% �̂ �̂ 3% 2% 1% 0.5% �̂ �̂

5 CFE -1.96 -2.25 -2.78 -3.37 -0.02 7.11 -2.16 -2.49 -3.06 -3.69 -0.71 6.54

CFD -1.91 -2.16 -2.59 -3.03 -0.01 5.02 -2.08 -2.36 -2.84 -3.35 -0.50 4.96

10 CFE -2.20 -2.81 -3.95 -5.33 -0.02 34.76 -2.35 -2.99 -4.23 -5.65 -1.00 34.68

CFD -1.93 -2.27 -2.86 -3.52 0.00 9.55 -2.03 -2.39 -3.05 -3.76 -0.47 9.75

20 CFE -2.57 -3.78 -6.20 -9.26 0.14 84.62 -2.79 -4.05 -6.53 -9.58 -1.01 106.64

CFD -1.87 -2.28 -3.04 -3.92 0.02 19.67 -1.97 -2.41 -3.22 -4.14 -0.55 22.13

Gauss -1.88 -2.05 -2.33 -2.58 0 3

This table shows four different quantiles on the left tail using the Cornish-Fisher expansion (CFE) and the
Cornish-Fisher distribution (CFD) for different degrees of kurtosis, �, and skewness, �. The quantiles have been

obtained numerically from a sample of 500,000 simulations. �̂ and �̂ columns stand for the sample skewness
and kurtosis computed with the 500,000 observations. The last row exhibits the corresponding quantiles for the
standardized Gaussian distribution.

Table 3: Descriptive univariate statistics on returns.

Mean (×102) �2 � � JB Wald KS

S&P 0.002 (0.097) 5.615 (0.644) -0.085 (0.185) 4.509 (0.406) 49 14.67 0.343

NKI -0.099 (0.128) 9.344 (0.750) -0.147 (0.146) 3.928 (0.308) 21 9.10 0.184

STX 0.150 (0.128) 8.672 (1.404) -0.414 (0.244) 5.997 (0.762) 209 28.74 0.447

EM 0.027 (0.149) 8.114 (0.854) -0.718 (0.229) 5.098 (0.774) 140 9.98 0.424

EME 0.110 (0.216) 18.832 (3.001) -0.443 (0.200) 5.604 (0.679) 164 29.26 0.292

Mean, �2, � and � denote the mean, variance, skewness, and kurtosis of returns, respectively. Estimates
are not annualized and standard errors, in parenthesis, are computed using the GMM-based procedure
proposed by Bekaert and Harvey (1997). JB, Wald and KS denote the Jarque-Bera statistic (Bera and
Jarque 1982), the Wald test of joint significance of skewness and kurtosis (Bekaert and Harvey 1997) and
the Kolmogorov-Smirnov statistic under the null hypothesis of normality, respectively. The corresponding
p-values are lower than 0.01 for all statistics and all series, this is why we do not report them.
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Table 4: Cornish-Fisher Density estimates.

â3 â2 â1 â0 KS-Test JB-Test

Panel A: Quantile-Quantile (QQ) estimates

S&P 0.1218 (0.030) -0.0406 (0.061) 1.9906 (0.097) 0.2205 (0.099) 0.035 [0.55] 0.145 [0.93]

NKI 0.1103 (0.029) 0.0547 (0.065) 2.7170 (0.133) -0.1541 (0.129) 0.025 [0.90] 0.027 [0.98]

STX 0.2288 (0.048) -0.1930 (0.098) 2.2029 (0.138) 0.3428 (0.118) 0.034 [0.39] 0.407 [0.81]

EM 0.1493 (0.036) -0.2617 (0.077) 2.3624 (0.129) 0.2881 (0.121) 0.026 [0.87] 0.092 [0.95]

EME 0.3391 (0.068) -0.2828 (0.126) 3.2338 (0.231) 0.3928 (0.172) 0.041 [0.35] 0.373 [0.83]

Panel B: Moments Method (MM) estimates

S&P 0.1008 (0.025) -0.0264 (0.067) 2.0541 (0.098) 0.2064 (0.105) 0.038 [0.43] 0.379 [0.82]

NKI 0.0883 (0.022) 0.0632 (0.066) 2.7832 (0.126) -0.1628 (0.132) 0.023 [0.92] 0.235 [0.88]

STX 0.1914 (0.045) -0.1419 (0.116) 2.3264 (0.149) 0.2921 (0.130) 0.044 [0.24] 1.520 [0.46]

EM 0.1188 (0.031) -0.2703 (0.083) 2.4512 (0.137) 0.2974 (0.122) 0.030 [0.72] 0.446 [0.80]

EME 0.2533 (0.068) -0.2316 (0.162) 3.5225 (0.242) 0.3423 (0.196) 0.054 [0.08] 4.043 [0.13]

Panel C: Maximum Likelihood (ML) estimates

S&P 0.1217 (0.032) -0.0926 (0.056) 1.9908 (0.094) 0.2654 (0.095) 0.026 [0.86] 0.316 [0.85]

NKI 0.1127 (0.038) 0.0239 (0.071) 2.7063 (0.127) -0.1271 (0.132) 0.022 [0.96] 0.112 [0.94]

STX 0.2200 (0.042) -0.3220 (0.084) 2.2358 (0.106) 0.4475 (0.108) 0.028 [0.77] 1.153 [0.56]

EM 0.1376 (0.038) -0.2239 (0.063) 2.3839 (0.111) 0.2560 (0.115) 0.020 [0.97] 0.114 [0.94]

EME 0.4829 (0.091) -0.3516 (0.125) 2.8760 (0.180) 0.4610 (0.145) 0.021 [0.97] 1.143 [0.56]

This table shows the Quantile-Quantile, Moments-Method and Maximum Likelihood estimates of the parameters of the
CFD using stock indexes series. The corresponding standard errors are displayed in parenthesis. KS-Test denotes the
Kolmogorov-Smirnov statistic for the CFD null hypothesis and JB-Test stands for the Jarque-Bera statistic that tests the
normality of the fictitious normal variables defined by equation (5). The corresponding p-values are showed in brackets.

Table 5: Density Goodness of fit

Log-Likelihoods Akaike Criteria Bayesian Criteria

Gaus. John. CFE CFD Gaus. John. CFE CFD Gaus. John. CFE CFD

S&P -1183 -1171 -1171 -1170 2375 2350 2351 2349 2392 2367 2368 2366

NKI -1315 -1309 -1309 -1309 2639 2626 2626 2625 2656 2643 2643 2642

STX -1296 -1263 -1268 -1260 2600 2533 2545 2529 2617 2550 2562 2546

EM -1279 -1256 -1258 -1256 2566 2520 2525 2521 2583 2537 2542 2538

EME -1497 -1459 -1454 -1454 3003 2926 2917 2916 3020 2943 2934 2933

This table presents three different model selection criteria, the Log-Likelihood, the Akaike and the Bayesian criteria, for
the estimation of five stock indexes. We consider four alternative models: the Gaussian (Gaus.), the Johnson distribution
(John.), the Cornish-Fisher Expansion (CFE) and the Cornish-Fisher Distribution (CFD).
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Table 6: Model summary

Innovation

Gaussian CFD CFD-asymm.
(
2 = �2 = 0)

GARCH Model 1 Model 3 Model 5
(�3 = 0)

NGARCH Model 2 Model 4 Model 6

This table summarizes the six models considered in this article accord-
ing to equations (18) to (24). Model 6 is the most general model and
nests the other ones.

Table 7: S&P 500 and EURO STOXX descriptives

mean median min. max. std. skewness kurtosis JB-test

S&P 500 -0.0001 -0.0001 -0.0947 0.1096 0.2198 -0.1178 11.3164 7521.8

Euro Stoxx -0.0002 0.0005 -0.0825 0.0996 0.2338 -0.0662 7.5801 2223.7

This table shows the main statistics for the daily series of the log-returns of the S&P 500 and the EuroStoxx indexes
for the period 03/17/2000 to 03/20/2010.

33



Table 8: S&P 500 GARCH models estimates (pre-filtered).

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

C(×103) 5.6777 −0.1918∘ 0.4008∗ 0.1489∘ 0.3857∗ 0.0999∘

(0.7173) (1.0802) (0.1730) (0.1658) (0.1725) (0.1287)

�0(×106) 0.1124∘ 1.5287 0.7186 1.0881 0.6599∗ 1.0649

(0.5701) (0.5549) (0.2828) (0.2338) (0.3161) (0.2568)

�1 0.9051 0.8620 0.9186 0.8697 0.9195 0.8673∗

(0.0105) (0.0142) (0.0088) (0.0143) (0.0106) (0.0150)

�2 0.0745 0.0464∗ 0.0814 0.0471 0.0805 0.0491∗

(0.0089) (0.0081) (0.0097) (0.0078) (0.0111) (0.0038)

�3 — −1.3471 — −1.2836 — −1.2769

(0.2684) (0.1896) (0.0637)


0 — — −0.3286 −0.4188 −0.2124∗∗ −0.2938

(0.0695) (0.0829) (0.1103) (0.0514)


1 — — −8.2893∗ −9.9554∗∗ −25.3031∗ −26.1919

(3.8505) (5.1635) (11.2827) (6.0073)


2 — — — — 28.2362∘ 31.9380

(18.6944) (11.3521)

�0 — — −1.6845 −2.2844 −1.7691 −2.4553

(0.2051) (0.2499) (0.2126) (0.1657)

�1 — — 55.7481 61.5990 52.3229 71.0286

(6.0639) (5.9193) (6.4698) (0.9468)

�2 — — — — −44.3677∗∗ −81.7170

(23.4164) (15.0613)

ℒ(�̂) 8211.3 8236.5 8230.3 8284.1 8230.8 8287.6

Goodness of fit

AIC −16415 −16463 −16445 −16550 −16442 −16553

SIC −16391 −16434 −16398 −16497 −16383 −16489

BIC −6.2849 −6.3012 −6.2875 −6.3257 −6.2818 −6.3223

This table shows the estimation of six GARCH models for the daily log-returns of the EuroStoxx 50
series from 03/17/2000 to 03/20/2010. The returns have been previously filtered with an ARMA(1,1)
structure. The last three rows stand for the Akaike, Schwarz and Bayesian criteria to measure the
goodness of fit. Estimates without markers are significant at 1%. (∗) and (∗∗) denote parameters
significant at 5% and 10% respectively, while (∘) denotes not significant parameters.
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Table 9: EuroStoxx 50 GARCH models estimates (filtered).

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

C(×103) 0.7701 0.3382∘ 0.7045 0.3128∘ 0.6648 0.3170∘

(0.2058) (1.4612) (0.1933) (0.1881) (0.1936) (0.1886)

�0(×106) 1.5562 2.1484 1.0715 1.8899 1.0655 1.8723

(0.3179) (0.8875) (0.3791) (0.3111) (0.3785) (0.3126)

�1 0.8990 0.8430 0.9010 0.8505 0.9018 0.8516

(0.0087) (0.0156) (0.0101) (0.0139) (0.0103) (0.0141)

�2 0.0944 0.0544 0.0994 0.0576 0.0982 0.0573

(0.0081) (0.0089) (0.0112) (0.0093) (0.0115) (0.0095)

�3 — −1.2775 — −1.1926 — −1.1893

(0.2613) (0.1995) (0.2029)


0 — — −0.5240 −0.7266 −0.7196 −0.7951

(0.1141) (0.1834) (0.1342) (0.1708)


1 — — 22.9211 26.6281 30.7324 29.1474

(6.6412) (8.0110) (6.8044) (7.8742)


2 — — — — −58.6326 −56.2688

(15.6929) (20.8892)

�0 — — −2.4733 −3.3316 −2.7191 −3.3676

(0.2804) (0.4508) (0.3122) (0.4785)

�1 — — 84.0231 93.2125 95.2238 93.5462

(13.4471) (20.2862) (12.4667) (25.5264)

�2 — — — — −103.8716 −110.9625∗

(29.0813) (52.1395)

ℒ(�̂) 7686.6 7760.8 7734.1 7791.4 7737.0 7792.1

Goodness of fit

AIC −15365 −15512 −15452 −15565 −15454 15562

SIC −15342 −15482 −15405 −15512 −15396 15498

BIC −6.0354 −6.0906 −6.0603 −6.1024 −6.0565 −6.0967

This table shows the estimation of six GARCH models for the daily log-returns of the EuroStoxx 50
series from 03/17/2000 to 03/20/2010. The returns have been previously filtered with an ARMA(1,1)
structure. The last three rows stand for the Akaike, Schwarz and Bayesian criteria to measure the
goodness of fit. Estimates without markers are significant at 1%. (∗) and (∗∗) denote parameters
significant at 5% and 10% respectively, while (∘) denotes not significant parameters.
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Table 10: In Sample Option Pricing Results

All maturities Short maturities Long maturities

All Calls Puts All Calls Puts All Calls Puts

Panel A: RMSE

B76 1.269 1.228 1.216 0.697 0.694 0.580 1.515 1.442 1.488

P-BS 0.664 0.606 0.567 0.336 0.280 0.225 0.638 0.545 0.509

CS 0.683 0.661 0.627 0.385 0.349 0.258 0.715 0.605 0.654

CFD 0.587 0.514 0.515 0.327 0.265 0.206 0.563 0.455 0.452

Panel B: MAE

B76 1.042 1.025 0.993 0.587 0.602 0.489 1.316 1.263 1.303

P-BS 0.525 0.483 0.448 0.267 0.216 0.171 0.508 0.433 0.404

CS 0.546 0.495 0.507 0.308 0.280 0.206 0.581 0.494 0.541

CFD 0.456 0.402 0.404 0.260 0.206 0.158 0.444 0.361 0.361

This table shows the in–sample average of both the root mean squared error (panel A) and the mean absolute
error (panel B) computed over the 292 daily estimations for the four option models considered: Black-76 (B76),
Practitioner Black-Scholes (P-BS), Corrado and Su (CS) and Cornish-Fisher density (CFD). “Short maturities”
columns contain options with a time to maturity lower than 61 days and “Long maturities” columns contain
options with a time to maturity larger than 60 days. For each category, the best performance is in bold.

Table 11: Out of Sample Option Pricing Results

All maturities Short maturities Long maturities

All Calls Puts All Calls Puts All Calls Puts

Panel A: RMSE

B76 1.359 1.337 1.368 0.802 0.853 0.745 1.626 1.579 1.683

P-BS 0.911 0.967 0.937 0.588 0.644 0.542 0.958 0.967 0.961

CS 0.849 0.826 0.864 0.567 0.611 0.516 0.935 0.883 0.961

CFD 0.814 0.806 0.817 0.551 0.590 0.507 0.877 0.840 0.875

Panel B: MAE

B76 1.100 1.098 1.094 0.661 0.710 0.618 1.396 1.361 1.457

P-BS 0.701 0.741 0.708 0.468 0.521 0.442 0.769 0.786 0.779

CS 0.676 0.673 0.687 0.464 0.517 0.429 0.763 0.739 0.798

CFD 0.642 0.651 0.649 0.450 0.496 0.421 0.718 0.708 0.731

This table shows the one week out–of–sample average of both the root mean squared error (panel A) and the
mean absolute error (panel B) computed over the 292 daily estimations for the four option models considered:
Black-76 (B76), Practitioner Black-Scholes (P-BS), Corrado and Su (CS) and Cornish-Fisher density (CFD).
“Short maturities” columns contain options with a time to maturity lower than 61 days and “Long maturities”
columns contain options with a time to maturity larger than 60 days. For each category, the best performance
is in bold.
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Table 12: Option hedging errors

All maturities Short maturities Long maturities

All Calls Puts All Calls Puts All Calls Puts

Panel A: RMSHE

B76 0.605 0.571 0.566 0.539 0.499 0.445 0.619 0.586 0.565

P-BS 0.526 0.459 0.491 0.407 0.320 0.313 0.511 0.423 0.457

CS 0.536 0.456 0.480 0.435 0.358 0.310 0.534 0.437 0.452

CFD 0.499 0.422 0.444 0.394 0.304 0.271 0.488 0.388 0.408

Panel B: MAHE

B76 0.449 0.426 0.408 0.398 0.378 0.318 0.465 0.435 0.410

P-BS 0.394 0.342 0.349 0.301 0.232 0.208 0.387 0.312 0.325

CS 0.400 0.338 0.342 0.324 0.264 0.215 0.400 0.322 0.324

CFD 0.377 0.315 0.320 0.296 0.222 0.189 0.371 0.288 0.296

This table shows the average of both the root mean squared hedging errors (panel A) and the mean absolute
hedging error (Panel B) for the four option models considered: Black-76 (B76), Practitioner Black-Scholes (P-
BS), Corrado and Su (CS) and Cornish-Fisher density (CFD). “Short maturities” columns contain options with
a time to maturity lower than 61 days and “Long maturities” columns contain options with a time to maturity
larger than 60 days. For each category, the best performance is in bold.
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Figure 1: CFD parameters and skewness-kurtosis envelopes
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The left panel exhibits the range of validity for the coefficients a2 and a3 of a standardized third-order CFD according
to equations (14) and (15). The right panel shows the regions of skewness and kurtosis covered by the third-order CFD,
the Gram-Charlier distribution used by Jondeau and Rockinger (2001), the semi–nonparametric distribution of León
et al. (2009) and the limit for all distributions.

Figure 2: Skewness surface
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This figure shows the surface of the skewness of a standardized third-order CFD as a function of the parameters of
the distribution (left graphic). The right-side graphic displays the skewness as a function of a2 for different values
of a3 (level curves).
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Figure 3: Kurtosis surface
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This figure shows the surface of the kurtosis of a standardized third-order CFD as a function of the parameters of
the distribution (left graphic). The right-side graphic displays the kurtosis as a function of a3 for different values of
a2 (level curves).

Figure 4: Third-order Cornish-Fisher densities
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This Figure shows different shapes of the standardized third-order CFD. We consider symmetric (top), positive skewed
(medium) and negative skewed (bottom) densities. The right-side graphics are more leptokurtic (higher a3).
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Figure 5: Logarithmic scale densities
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This Figure shows, in logarithmic scale, the fitted third-order Cornish-Fisher Density (dashed line),
the fitted Gaussian density (dotted line) and the empirical density of the series (solid line) of daily
returns of the YEN/USD exchange rate for the period 01/04/1988–08/15/1997.

Figure 6: QQ-plot and CFD density
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This Figure shows the QQ-plot (left panel) and the histogram (right panel) of the series of daily returns of the YEN/USD
exchange rate for the period 01/04/1988–08/15/1997. The solid line represents the CFD approximation estimated by
least squares: R = Q(X) = 0.08379X3 − 0.02655X2 + 0.7201X + 0.02628. The dashed line represents the Gaussian
approximation.
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Figure 7: S&P 500 and EuroStoxx time series
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This Figure shows the time series of the S&P 500 and the EuroStoxx 50 from 03/17/2000 to 03/20/2010.

Figure 8: S&P 500 conditional skewness and kurtosis
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This Figure shows the estimated conditional skewness and kurtosis time series of the S&P 500 daily returns from
03/17/2000 to 03/20/2010.
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Figure 9: Differences between CFD and geometric Black-Scholes call prices.
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This Figure shows the difference between CFD and geometric Black-Scholes call prices with an strike of
K = 10, time to maturity of one month, the annual volatility is 40%, and the risk free interest rate equals
5%. We assume parameters (a2, a3) equal to (0, 0.092), (0.11, 0.079) and (−0.11, 0.079) which correspond to
skewness and kurtosis coefficients of (0,8), (1,8) and (-1,8), respectively.

Figure 10: Black-Scholes implied volatilities.
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This Figure shows the implied Black-Scholes volatilities for a European-style call option with an strike of
K = 10, time to maturity of one month, and a risk free interest rate equal to 5% when the ”true” option price
is driven, either by the CFD model (left panel) and the Corrado and Su model (right panel), with an annual
volatility of 40%. We assume parameters (a2, a3) equal to (0, 0.092), (0.11, 0.079) and (−0.11, 0.079) which
correspond to skewness and kurtosis coefficients of (0,8), (1,8) and (-1,8), respectively.
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Figure 11: CFD and Corrado-Su price differences
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This Figure shows the relative bias (left panel) computed as (CS-CFD)/CFD×100 and the absolute bias (right panel),
computed as CS-CFD, for a European-style call option with an strike of K = 10, time to maturity of one month, a risk free
interest rate equal to 5% and a yearly volatility of 40%. We assume parameters (a2, a3) equal to (0, 0.092), (0.11, 0.079)
and (−0.11, 0.079) which correspond to skewness and kurtosis coefficients of (0,8), (1,8) and (-1,8), respectively.

Figure 12: CFD and Corrado-Su option Delta and Gamma
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This Figure shows the option delta (left panels) and the option gamma (right panels) for either the CFD and CS option
pricing formulae for a European-style call option with an strike of K = 10, time to maturity of one month, a risk free
interest rate equal to 5% and a yearly volatility of 40%. We assume parameters (a2, a3) equal to (0, 0.092), (0.11, 0.079)
and (−0.11, 0.079) which correspond to skewness and kurtosis coefficients of (0,8), (1,8) and (-1,8), respectively.
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Figure 13: Delta and Gamma differences
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This Figure shows the option delta differences (top) and the gamma differences (bottom) between the CFD and the CS
models for a European-style call option with an strike of K = 10, time to maturity of one month, a risk free interest
rate equal to 5% and a yearly volatility of 40%. We assume parameters (a2, a3) equal to (0, 0.092), (0.11, 0.079) and
(−0.11, 0.079) which correspond to skewness and kurtosis coefficients of (0,8), (1,8) and (-1,8), respectively. The left
panels show the absolute difference measured as CS-CFD, meanwhile the right panels show the relative differences
measured as (CS-CFD)/CFD×100.

Figure 14: Option implied volatility functions
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This Figure shows the estimated volatility functions (see equation 31) for S&P 500 options traded on 08/28/1991.
We present the estimation for all options (solid line), short-term options (dashed line) and long-term options
(dotted line). The crosses are the implied Black-Scholes volatilities.
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Figure 15: Option implied skewness and kurtosis and density restrictions
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This Figure shows the scatter plot of the pairs (kurtosis, skewness) implied in S&P 500 European option prices using
two different models: CS and CFD. Moreover, we add the bounds for the allowed kurtosis-skewness values for both
the Gram-Charlier and Cornish-Fisher distributions, which underlie the two option pricing models respectively (see
Figure 1).

Figure 16: Option implied moments time series
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This Figure shows the implied volatility (top), skewness (medium) and kurtosis (bottom) using the prices of S&P 500
European options from June 1988 to December 1993, and for three different option valuation models: CFD (solid
line), CS (dashed line) and B76 (dotted line).
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